
Inside This Issue

Newton 2.0:
What’s the Big
Idea?
by Joseph Ansanelli & the Newton Platform
Marketing Team, Apple Computer, Inc.

A lot has happened since Apple brought the
industry’s first personal digital assistant (PDA) to
market in 1993. Many companies have entered
the market, and some competitors have already
fallen by the wayside. Technology has advanced.
Improvements have been made on many fronts
– software, communications capabilities, and
services options have grown more sophisticated
and useful. Today, though the world is less
inclined to view PDAs as a panacea for all
technological and business problems, there are
many customers who are championing the
usefulness of PDAs.

Most important, the Newton PDA platform
continues to gain momentum in the market.
With the advent of Apple’s second-generation
PDA software platform – Newton 2.0 – more and
more companies and individuals will have
reasons to make Newton their platform of
choice. With a significant number of
improvements – all derived from customer
feedback – Newton 2.0 offers a great solution for
keeping professionals organized and helping
them communicate, while providing more robust
integration with personal computers. At the
same time, we created a richer platform and
more tools for software development.

The market and customers for mobile devices
On the front lines of the business world, life is

continued on page 26 continued on page 29

Volume I, Number 5 November 1995

gy gy Newton Technolo
J O U R N A L

®

Technical Overview
of Newton 2.0:
The Developer
Perspective
by Christopher Bey, Apple Computer, Inc.

Version 2.0 of the Newton System Software
brings many changes to all areas. Some
programming interfaces have been extended;
others have been completely replaced with new
interfaces; and still other interfaces are brand
givesnew. This article a brief overview of what is
new and what has changed in Newton 2.0,
focusing on those programming interfaces that
you will be most interested in as a developer.

NEWTAPP

NewtApp is a new application framework
designed to help you build a complete, full-
featured Newton application more quickly. The
NewtApp framework consists of a collection of
protos that are designed to be used together in a
layered hierarchy. The NewtApp framework
links together soup-based data with the display
and editing of that data in an application. For
many types of applications, using the NewtApp
framework can significantly reduce development
time because the protos automatically manage
many routine programming tasks. For example,
some of the tasks the protos support include
filing, finding, routing, scrolling, displaying an
overview, and soup management.

The NewtApp framework is not suited for all
Newton applications. If your application stores
data as individual entries in a soup, displays that

Newton Directions New Technology

Newton Directions

Newton 2.0: What’s the Big Idea? 1

New Technology

Technical Overview of Newton 2.0:
The Developer Perspective 1

NewtonScript Techniques

Ensuring Newton 2.0 Compatibility 3

NewtonScript Techniques

Converting Newton 1.x Apps to
Newton 2.0 6

Communications Technology

Newton 2.0 Communications Overview:
Peeling the Onion 11

New Technology

Newton 2.0 User Interface –
Making the Best Better 17

November 1995 Newton Technology Journal

2

Newton 2.0 –
Out of Infancy
Let’s cut to the chase here. What exactly is
so great about Newton 2.0 and why should I
care? The answer is: lots. Lots that we think
you as developers will love – and even more
that we think Newton platform customers will
love. That’s probably the most important part
about the whole 2.0 launch. We haven’t
developed Newton 2.0 just because we
wanted to. We developed it because it is a
powerful technology that solves real customer
problems, and that’s the reason we’re all in
business – to solve customer problems and
meet unfulfilled needs (and hopefully make a
profit doing it!).

So, here we are announcing a major new
release of the Newton operating system; but
first, we have a little history to get past. We
think Newton 2.0 is jam packed with so many
improvements, history may just be forgotten.
But let’s take a minute to look at that history
and evaluate exactly why it was important for
the platform’s evolution.

In 1993, Apple and Sharp launched their
first products in the new PDA category –
the Apple MessagePad and the Sharp
ExpertPad – based on Apple’s Newton OS.
Technology enthusiasts eagerly bought
them up, hoping to realize the promise of a
brand new technology. They wanted to be
among the first to communicate wirelessly,
to enter data via handwriting input, and to
organize their lives on a computer small
enough to fit into their pockets. The press,
too, thrilled at the promise of a revolution
in technology, grabbed at the devices and
began their evaluation.

Reactions were not exactly what Apple had
hoped for. Almost immediately, the press

panned the Newton OS based primarily on
one feature alone – handwriting recognition.
But, a really positive thing, perhaps the most
important thing of all, happend in response
to those less than stellar reactions.
Customers and developers together have
been evaluating the technology, realizing its
capabilities and potential, and creating real
world solutions that harness the platform’s
power to handle real customer problems in a
cost-effective, time-saving way. Some of these
solutions have been technology experiments
and some have been hard-core, positive ROI
products for business professionals and
vertical market customers. And they all
resulted in some major accomplishments.
They got people thinking about the
possibilities. They got people doing real
things with PDAs. And they helped the
Newton Systems team at Apple learn to listen
long and hard to customer needs while
continuing to refine the technology and
improve on it for its next stage in life.

What technology savvy folks realized, at the
time the Newton OS was launched, is that new
technology is never born fully mature. Like
most life forms, technology must also go
through many life stages. In infancy, its mere
existence is a miracle. It grows into the
crawling years when functionality begins to
provide some freedom of movement with
exploration of anything it can get into. It
finally gets to its feet and toddles along until
adolescence, when the growth rate is
phenomenal. Only then does the technology
enter a mature stage that could satisfy the
needs of its users. Newton devices, like most
life forms, have needed some time to grow up
in order to reach their potential. There’s no
doubt that the technology is incredible and
has been since introduction. But the Newton
operating system is now well on its way
through the toddler years and into
adolescence. Its potential is being realized, its

……………………………………………………

Published by Apple Computer, Inc.

Lee DePalma Dorsey • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Philip Ivanier • Manager, Newton Developer Relations

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, Jim Schram,
Maurice Sharp, Bruce Thompson

Contributors
Joseph Ansanelli, Christopher Bey, Garth Lewis,
Julie McKeehan, Neil Rhodes, Bill Worzel

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

John Kawakami • Editorial Assistant

Judith Chaplin • Art Director

……………………………………………………

© 1995 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. CompuServe,
Pocket Quicken by Intuit,CIS Retriever by BlackLabs, PowerForms
by Sestra, Inc.,ACT! by Symantec, Berlitz, and all other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

gy gy Newton Technolo
J O U R N A L

®

Volume I, Number 5 November 1995 Letter From the Editor
by Lee DePalma Dorsey, Apple Computer, Inc.

Editor’s Note

continued on page 10

This article provides guidelines to help you ensure that your applications
are compatible not only with current Newton devices, but also with future
devices that Licensees may create, and with Newton 2.0. Failure to follow
these guidelines may cause your application to break in the future.

UNDOCUMENTED GLOBAL FUNCTIONS

Don’t use undocumented global functions. Documented functions will
continue to exhibit their documented behavior. Undocumented functions
may act differently in the future, or may not exist. Here are some examples
of undocumented functions to avoid:

CreateAppSoup
(use the platform file function RegisterCardSoup instead)

SetupCardSoups
(use the platform file function RegisterCardSoup instead)

MakeSymbol
(use the documented global function Intern)

GetAllFolders

Test by:
Compile your application with NTK 1.6 which will warn about calls to

undocumented global functions.

UNDOCUMENTED GLOBAL VARIABLES

Don’t use undocumented global variables. Documented global variables will
continue to contain their documented value. Undocumented global
variables may act differently in the future, or may not exist. Here are some
examples of undocumented global variables to avoid:

cardSoups
(use the platform file function RegisterCardSoup instead)

extras

UNDOCUMENTED SLOTS IN FRAMES

Only use documented slots. Many protos and other objects use some slots
internally, in addition to the ones they document. Only the documented
slots are supported; others may be removed or changed. Here are some
examples of undocumented slots in objects:

cursor.current
paperRoll.dataSoup
GetRoot().dockerChooser
GetRoot().keyboardChicken

UNDOCUMENTED MAGIC POINTERS

Don’t use undocumented magic pointers (defined in the platforms file as @
numbers). These magic pointers indirectly point to actual objects in the
Newton. If you use undocumented ones, they could point to different
objects in future devices or system software.

SOUPS

Store 0 is internal; all others are unspecified
The only store that you can count on is that GetStores()[0] is

the internal store. Don’t rely on the length of the GetStores() array
or on the relative positions of stores in that array (other than that the first is
the internal store). Future Newton devices might support more than one
PCMCIA slot, might support partitioning a large storage card into multiple
stores, or might support virtual stores (for example, a remote volume
appearing as a store).

Many applications that support the action button contain code that calls
GetStores() to determine the title of the card action item in the
picker. This is OK, but unnecessary. Instead, have your entry for the card
action in your routing frame reference ROM_cardaction. For
instance:

myRoutingFrame := {
print: …,
…
card: ROM_cardAction,

}

Test by:
Use the List command in NTK to search your project for calls to

GetStores(). Examine how you use the result. Do you assume that
the length will be no more than two? Do you assume that the second entry
will be the external store?

UNION SOUPS

Use the RegisterCardSoup/UnregisterCardSoup platform file
functions

At one point in time, shortly after the Newton was released, developers
were told to add a RegisterCardSoup and
UnRegisterCardSoup slot to their base template with code in
RegisterCardSoup which called CreateAppSoup and
SetupCardSoups. Later, platform file functions with the same names
were created, and developers were told to use those instead. The platform
file functions are guaranteed to do the right thing, even on future system
software, whereas direct calls to CreateAppSoup and
SetupCardSoups aren’t supported.

Test by:
Use the List command in NTK to search your project for

CreateAppSoup or SetupCardSoups.
Or, run your application with the Compatibility app (available in the

Llama Lounge area on eWorld) which will print to the Inspector if your
application calls CreateAppSoup or SetupCardSoups.

Newton Technology Journal November 1995

3

Ensuring Newton 2.0 Compatibility
by Neil Rhodes & Julie McKeehan, Calliope Enterprises, Inc.

NewtonScript Techniques

soupChanged could be called more often
BroadcastSoupChange is called for your soup by the system

when a store containing your soup is inserted or removed. In the future, it
may be called by the system when a soup is created, when a soup is deleted,
or in any other cases where a soup is modified.

Test by:
Run your application with the Compatibility app which will call

soupChanged from within UnRegisterCardSoup and each
time an entry is added to a soup. Make sure your application works
correctly.

Constituent soups don’t necessarily exist on all stores
For example, a store which is read-only won’t have a soup created on it.

In the future, constituent soups might only be created on the default store as
needed; if no entries are added on a particular store, the soup wouldn’t exist.

Therefore, don’t write code like:

defaultStore:GetSoup("myUnionSoup"):Add(…);

Instead use:
GetUnionSoup("myUnionSoup"):AddToDefaultStore(…);

The first code snippet may not work since the constituent soup may not
yet have been created.

unionSoup:AddToDefaultStore may throw an exception
AddToDefaultStore is documented to throw an exception in

case of an error; it may start doing so.

Test by:
Run your application with the Compatibility app which will cause

AddToDefaultStore to throw an exception on a store full error.
Check the “Simulate store full” checkbox which simulates a full store
(EntryChange and AddToDefaultStore will simulate store
full).

Don’t use unionSoup:Add
Although Add is documented to work for union soups, don’t use it (why

would you want an entry to be added to an unspecified store, anyway?).

Test by:
Run your application with the Compatibility app which will print to the

inspector if unionSoup:Add is called.

VIEW SYSTEM

Handle any screen size
Make sure to handle screen sizes using GetAppParams. The

screen could be larger or smaller in one or both dimensions than currently
shipping products. For example, licensees might make units which are
wider than they are tall. If you have a minimum size and screen is too small,
put up a slip stating the case. If you have a maximum size, use it (don’t
blindly make your app the size of the screen if it doesn’t make sense).

Test by:
An application which simulates different screen sizes may be released

shortly; test with it.

Don’t rely on the order of viewQuitScript messages
The viewQuitScriptmessage is sent first to the view which is

Closed. The order in which descendants receive the
viewQuitScript is undefined and may change. If you need to
guarantee the order in which messages are sent, have your top-level
viewQuitScript send its own message (maybe
myViewQuitScript) recursively to descendants.

Test by:
Look at your viewQuitScriptmethods everywhere but in your

base template. Do you send messages to your descendants or access slots
from your descendants? What about your ancestors?

STRINGS

Use only documented string functions to manipulate strings
• use StrLen to find out the length of a string
• use StrMunger to perform operations that change the length of a

string.

//e.g. append "abc" to the end of a string
StrMunger(str,StrLen(str),nil,"abc",0,nil);

//e.g. delete 4 character from the end of a string
StrMunger(str,StrLen(str)-4,nil,"",0,nil);

• Do not use the following functions on strings:

Length (except to get the size of the binary object which may be unrelated to the length
of the string)

SetLength
BinaryMunger
any of the StuffXXX functions

• Do not use undocumented string functions.
• Do not put nulls inside strings.

e.g. string[10] := $\u00 as a quick way to truncate a string to 10 chars.

Test by:
Run your application in conjunction with the Compatibility application

which will print to the Inspector if functions other than those documented
for strings are called on a string. Note that the Compatibility application
won’t catch calls to Length.

USE PLATFORM FILE FUNCTIONS

When an API is provided, use it.

Use RegFindApps and UnRegFindApps instead of modifying
findApps global

The findApps global variable is documented to contain an array of
symbols of applications which support global find. However, rather than
directly accessing this array, use the platform file functions
RegFindApps and UnRegFindApps.

Test by:
Use the List command from NTK to search for findApps.

November 1995 Newton Technology Journal

4

Don’t access the userConfiguration global directly
Instead, use the platform file functions GetUserConfig,

SetUserconfig, FlushUserConfig.

Test by:
Use the List command from NTK to search for userConfiguration.

Don’t send any messages to the IOBox app
Instead, use the Send platform file function.

Test by:
Use the List command from NTK to search for GetRoot().outBox.

UNDO/REDO

From within your undo action, call AddUndoAction
In Newton 1.x, the user interface supports two levels of undo. Newton

2.0 provides an Undo/Redo facility instead. In order to specify the redo
action to Newton 2.0, your code needs to call AddUndoAction when
the user chooses Undo. Thus, you need to call AddUndoAction from
within the call which is executing an undo action.

On 1.x systems, calls to AddUndoAction while an undo action is
being executed are ignored; on Newton 2.0, the same call would register a
redo action.

For example, here is code handling deleting an item

MyDelete := func(item)
begin

EntryRemoveFromSoup(item);
AddUndoAction('MyUndoDelete, [item]);

end;

// here is the code to undo the delete
MyUndoDelete := func(item)
begin

mySoup:AddToDefaultStore(item);

// Newton 1.x ignores this call
// Newton 2.0 treats it as a Redo of the delete
AddUndoAction('MyRedoDelete, [item]);

end;

// here is the code to redo the delete
MyRedoDelete := func(item)
begin

EntryRemoveFromSoup(item);
AddUndoAction('MyUndoDelete, [item]);

end;

ROUTING

Use the slip symbols 'printslip, 'mailslip, 'faxslip, 'beamslip only in
your routing frame

Don’t try to access GetRoot().printSlip, for instance. In
addition, don’t check those symbols from your SetupRoutingSlip
method.

Test by:
Use the List command from NTK to search for each of the four symbols.

Make sure they appear only as the contents of the routeSlip slot
within your routing frame.

Don’t rely on category symbols, 'printcategory, 'faxcategory,
'beamcategory, 'mailcategory

Don’t check for these symbols from your SetupRoutingSlip method, for
instance.

Test by:
Use the List command from NTK to search for each of the four symbols.

Use only the 'body slot for your data in the fields frame
The body slot should be used for any data you wish to preserve until

printing/faxing time. If you are beaming or mailing, the body slot will be
overridden with the target.

Test by:
Check your SetupRoutingSlipmethod to see whether you

write to anything other than fields.body.

Don’t read the iobox soup
The format of items in the iobox may change.

Newton Technology Journal November 1995

5

NTJ

If you have an idea for an article you’d like to write for Newton Technology Journal,
send it via Internet to:

piesysop@applelink.apple.com or AppleLink: PIESYSOP

November 1995 Newton Technology Journal

6

INTRODUCTION

This article tells you how to convert your existing Newton application to
take advantage of features of Newton 2.0. (Note that much of this material
will not make sense if you’re not already familiar with creating an application
within the 1.0 Newton operating system.) We’ll cover three types of changes
you need to make: getting your 1.0 application working in the 2.0 world;
redoing your existing 1.0 code to take advantage of enhanced existing
features; and adding support for new 2.0 features.

In the section that deals with existing features, we’ll cover soup changes
first. Newton 2.0 gives you increased control of soup information, as well as
offering you the ability to speed up your queries and entry displays. Next,
we’ll look at Filing and Find changes and then move on to the new way that
routing is handled. For most of these topics we’ll provide you with source
code examples.

In the section that deals with new features, we’ll point out the new
methods or changes that you might want to implement within your
application. As you can imagine, this is a grab bag of topics, and is not
covered in any particular order. This section is not a comprehensive
treatment of the new features; rather, we cover some of the more important
ones. Notice, for example, that one of the most important aspects of the
Newton 2.0, NewtApp, is not even discussed. This is because NewtApp is
better suited for applications written from scratch.

MAKING YOUR 1.0 APPLICATION 2.0 COMPATIBLE

The most basic upgrades involve both using NTK 1.6 and making minor
changes to ensure compatibility. Review the following steps as you upgrade
your application.

Check your existing application
The first step you need to take is to make sure that your existing

application works correctly under Newton 2.0. If it doesn’t, then you should
work through the changes described in “Newton Compatibility” elsewhere in
this issue.

Build with NTK 1.6
Although it is not necessary to use NTK 1.6 to build Newton 2.0

applications, it is desirable, and since you’ll be making changes to your
application anyway, you may as well modify it to use NTK 1.6.

Open your NTK 1.0 project within NTK 1.6, then build and download it.
Run it through the standard set of paces to verify that the application works.

Use the Newton 2.0 platform file
From the Project Settings dialog, select the Newton 2.0 platform file

rather than the MessagePad platform file. Rebuild and download and then
verify that your application works.

Remove NTK 1.0 build order
From within the Project Settings dialog, uncheck NTK 1.0 build order. By

doing this, NTK will no longer add pt_filename slots to the base template
for user protos. Now, change all of your code that references pt_filename.
For example, if you have code that looks like this:

GetRoot().(kAppSymbol).pt_filename

change it to:

GetLayout("filename")

Now build your application. You will most likely find that the order in
which files are built needs to be changed. In such a case, NTK will notify you
that the order is wrong with the following error message:

“The file filename has not been processed yet”

Note that a file referenced by GetLayoutmust be built before the call to
GetLayout.

To change the order in which your files are built, you will use the Process
Earlier or Process Later menu items. You can do this while viewing the
project window in NTK 1.6.

TAKING ADVANTAGE OF ENHANCED NEWTON 2.0 FEATURES

Many 1.0 features have been modified in the new system. Indeed, changes
have been made in virtually every feature. Some features have been so
completely overhauled that they bear little resemble to their earlier versions;
an example of this is routing. Other features have been pepped up or have
been given increased capabilities, but operate pretty much as they did in the
past; Find is a perfect example of this.

Data storage
Many changes have been made to the way data storage is handled in the

Newton 2.0 world. Some of the changes are fairly simple, such as how you
register your soups; other changes involve implementing a whole new set of
calls, such as the new soup notification routines.

Soup registration
Instead of using RegisterCardSoup and UnRegisterCardSoup, you will use

RegUnionSoup and UnRegUnionSoup.
Note that these new routines take soup definition frames that provide

information about the soup, its indexes, a user-visible name, and so on.

Soup change notification
In the 1.0 system, soup change notification was fairly rudimentary. You

would be notified that a soup had changed, but receive no information

Converting Newton 1.x Apps to Newton 2.0
by Neil Rhodes & Julie McKeehan, Calliope Enterprises, Inc.

NewtonScript Techniques

about what had changed. In the Newton 2.0 world the situation is improved,
and the granularity for notification is much finer. You can be notified about a
wide variety of events, such as: an entry has been added, an entry has been
modified, a soup has entered the union soup.

To use this new form of notification you must:
• Call the auto-xmit routines when you change any aspect of a soup
• Register for the new type of notification

You will no longer add your application symbol to the soupNotify array,
but instead will call RegSoupChange and UnRegSoupChange. Also, you will
use the new Query soup method instead of the old standard Query global
function.

Thus, your old query code that looked like this:

Query(soup, …)

Will now look like this:

soup:Query(…)

Tags for folders
The slow folder display in the 1.0 system has been fixed with the

introduction of tags. Thus, if your application supports filing, it is essential
that you use tags to speed up you displays when the user is switching
folders.

Add a tag index to your soup
In your soup definition frame, add an index to the indexes array. It

should look like this:

indexes: […,
{structure:'slot, path: 'labels, type: 'tags, tags:[]}

]

Note that the tags array can be empty. As entries are added to the soup,
the array will be updated automatically.

Use tag index when doing your initial query
In your initial query, use the tagSpec slot of the query spec to specify the

folder. You also need to remove any code in the validTest that was used to
find entries in a folder. Here’s a before-and-after example:

soup:Query({type: 'index,
indexPath: …
validTest: func(e) begin

return labelsFilter = '_all or e.labels = labelsFilter
end,

});

Here is the way your new code should look:

if labelsFilter <> '_all then
myCursor := soup:Query({type: 'index,

indexPath: …
tagSpec: [labelsFilter],

})
else

myCursor := soup:Query({type: 'index,
indexPath: …

});

Call query from your FilingChanged method

You will also need to call your new query from within your FilingChanged
method to avoid the slow display speed of 1.0. Here is an example of how
your new method will look:

app.FilingChanged = func()
begin

if labelsFilter <> '_all then
myCursor := soup:Query({type: 'index,

indexPath: …
tagSpec: [labelsFilter],

})
else

myCursor := soup:Query({type: 'index,
indexPath: …

});
// redisplay

end

Modify your tags when the user changes or deletes a folder

You must also update the tags if a folder is deleted or changed. You
needn’t worry about updating the tags when adding a folder, because the
tags are automatically added the first time an entry that contains the new tag
is added.

Here is code that handles the updating:

app.FolderChanged = func(soupName, oldFolder, newFolder)
begin

//do nothing if a folder was added
if oldFolder then begin

// iterate through updating each entry
local s := GetUnionSoup(kSoupName);
local cursor := s:Query({type: 'index,

tagSpec: [oldFolder]});
local e := cursor:Entry();
while e do begin

e.labels := newFolder;
EntryChangeXMit(e, kAppSymbol);
e := cursor:Next();

end;

// update tags
if newFolder = nil then // a folder was deleted

s:RemoveTags([oldFolder])
else // a folder was modified

s:ModifyTag(oldFolder, newFolder);
end;

end

ENTRY ALIASES

In the old 1.0 world, you had to go through a bit of contortion when you
wanted to uniquely identify a soup entry. To create such a reference you had
to store a combination of entry unique ID, soup ID, and store ID. In
Newton 2.0, things are much simpler. Now, you create an entry alias. You
can then use it to uniquely reference an entry and to retrieve that
corresponding entry.

The new calls that accomplish this are MakeEntryAlias and
ResolveEntryAlias. You will use these anywhere you need to save references
to entries. For example, to save the currently-displayed entry, your code
should look like this:

app.viewQuitScript := func()
begin

local currentEntryAlias := MakeEntryAlias(myCursor:Entry();
// save currentEntryAlias in with other application preferences
…

);

Now, to open the application at the last-displayed entry, all you have to
do is this:

app.viewSetupFormScript := func()
begin

…
local currentEntryAlias;
// initialize currentEntryAlias from savedpreferences

Newton Technology Journal November 1995

7

local currentEntry := ResolveEntryAlias(currentEntryAlias);
if currentEntry then

myCursor:Goto(currentEntry);
…

end;

NEW QUERY SPECS

You will no longer be using startKey and endTest in your query specs.
Instead, you will use beginKey or beginExclKey as a replacement for startKey.
Likewise, you will use endKey or endExclKey instead of an endTest.

There is also the nice little addition of being able to use an indexValidTest
instead of a validTest if your validity testing depends only on the value of the slot
being indexed. This will speed cursor operations up (because only the index
value is used, the entry itself doesn’t need to be read to determine validity).

MULTI-SLOT INDEXES

In the Newton 1.x, you could index on only one slot. This is a thing of the
past in Newton 2.0, which provides multi-slot indexes. Here’s an example of
an index that sorts first by last name and then by first name:

soup:AddIndex(
{structure: 'multiSlot,
path:['lastName, 'firstName],
type:['string, 'string]
});

Here’s an example of a query that will use our new multi-slot index:

soup:Query({type: 'index, indexPath: ['lastName, 'firstName]});

There are some other features that you can set up in your indexes as
well. These include:
• Specifying the sort order (ascending or descending) of keys
• Counting the number of entries in a cursor (cursor:CountEntries)
• Resetting to the end of the cursor (cursor:ResetToEnd)
• Having string indexes be case and/or diacritical sensitive

FIND AND FILING

Many of the changes that have been made to Find and Filing in Newton 2.0
are similar, so they will be covered together. Some changes are simple, such
as how you register with the system; other changes involve the addition of
new methods.

Find registration
Use the platform file functions RegFindApp and UnRegFindApp instead of

manipulating the findApps array directly (these platform file functions work
in 1.x as well as Newton 2.0).

Filing registration
Instead of adding to the soupNotify array, use RegFolderChanged and

UnRegFolderChanged.

Find date equal
Within Newton 2.0 there is a user interface for finding an entry with a

particular date. As a result, you need to support finding particular dates. Here
is sample code for DateFind that supports finding dates before, dates equal,
and dates after (it assumes entries are indexed on the timestamp slot):

app.DateFind := func(findTime, findType, results, scope,
statusForm)
begin

constant kMinutesPerDay := 1440;

if statusForm then
statusForm:SetStatus("Searching in" &&

kAppName & $\u2026);

local theSoup := GetUnionSoup("Notes");
if theSoup then begin

local queryFrame := {
type: 'index,
indexPath: 'timestamp,

};
if findType = 'dateBefore then

queryFrame.endExclKey := findTime;
else if findType = 'dateOn then begin

queryFrame.beginKey := findTime;
queryFrame.endExclKey := findTime + kMinutesPerDay;

end
else // dateAfter

queryFrame.beginExclKey := findTime;
local theCursor;

theCursor := theSoup:Query(queryFrame);
if theCursor:Entry() then

AddArraySlot(results,
{_proto :soupFinder,

owner: GetRoot().(kAppSymbol),
title: kAppName,
cursor: theCursor,
findType: findType,
findTime: findTime,

});
end;

end

Filter by store
The folder tab can now filter not just by folder but also by store. If a

storesFilter slot exists in the parent inheritance chain of the folder tab, then
stores as well as folders are shown in the folder tab. The value of the
storesFilter slot is nil if all stores should be displayed. Otherwise, the slot is
set to a store object. When the user changes a store in the folder tab, the
FilingChanged method will be called.

Note that your Query calls should take into account the current
storesFilter (just as it takes into account the value of the current
labelsFilter).

CARD ROUTING

The Newton 2.0 user interface has changed the location of card routing.
Moving to and from cards is now in the folder slip rather than in the action
picker. By default, this feature is disabled in the new system.

If you support card routing in your application, you should remove the
corresponding card slot from the routing frame. Next, you should add a
doCardRouting slot (with a value of true) to your application base template.
If your application doesn’t support folders, but does support card routing,
you will also need to add a protoFolderButton to your status bar and set the
value of doCardRouting in your base template to 'onlyCardRouting.

ROUTING

Many of the changes in the new system make routing much easier to
implement. Changes have been made in both the registration process and
in how various routing actions are implemented. Thus, you will need to add
new code as well as clean up your old code.

Remove the old 1.x routing registration
An important first step is to fix the way in which registration is handled.

Start by removing the code in your InstallScript that installs a routing frame in
the routing global and that calls BuildContext to add a view to the root view.

November 1995 Newton Technology Journal

8

Likewise, get rid of the code in your RemoveScript that removes the
routing frame from the routing global and the corresponding view from the
root view.

Adding route actions
To support actions (like duplicate and delete), add a routeScript slot to

your base template (actually, from any ancestor of the protoActionButton).
The value of this slot is an array of frames. Each frame contains the following
slots:

title:
routeScript: func(target, targetView)
icon:

USING STATIONERY FOR ROUTING

In Newton 2.0, routing is handled by the use of view stationery. Thus, the
items that appear in the routing button depend entirely on the type of the
data that is currently being viewed (the class slot of the current target).
Thus, within this new system you need to handle some new tasks: setting
the target’s class slot and stationery registration.

Setting the class of target
First, you should make sure that the target has a class slot that specifies

the kind of data in this item. For instance, a check-writing application might
have checks with a class slot of '|check:MySignature| and deposits with a
class slot of '|deposit:MySignature|. It is easiest to set this class slot when
entries are created.

Stationery registration
To handle stationery registration you will be installing one data def for

each kind of data. For example, in a checkbook application, you would
install one data def for '|check:MySignature| and another one for
'|deposit:MySignature|. Typically you will do this installation in your
InstallScript and remove each data def in your RemoveScript.

Here’s an example of registering:

RegDataDef(kCheckDataDefSymbol, {
_proto: newtStationery,
symbol: kCheckDataDefSymbol,
superSymbol: kAppSymbol,
name: "Check",
version: 1

});

Handling routing
You’ll have to do some further conversion to handle print formats in your

project. You will create a print format data view by adding a title slot (the
same title that appears in the format picker) and a symbol slot (containing a
symbol unique to your data view) to your templates that proto from
protoPrintFormat.

If your application supports sending frames (like Beam and Mail), then
you will also need to create a targetFrameFormat data view:

{
_proto: targetFrameFormat,
title: "my title",
symbol: ‘|target::check:MySignature|, //unique for the data view

}

If your application supports a text representation (like Mail), then you
need to add a textScript slot to your data def which will be used to create
text from the target.

Handling the In/Out box
In order for your application to display your data in the In/Out box, you

should create a data view. To do this you need to do several things:
1. Create a layout file with templates that can display your data (note that

methods in these templates can reference target, an inherited slot
which will contain the target frame).

2. In the topmost template add the following slots to make the template a
viewer data view:

title: "Check Viewer",
symbol: kCheckViewerDataViewSymbol,// unique for data view
type: ‘viewer,

3. Install all your data views in your InstallScript with calls to RegDataView:

RegDataView(‘|check:MySignature|, myDataView);

4. Unregister your data views in your RemoveScript with calls to
UnRegDataView:

UnRegDataView(‘|check:MySignature|,
kCheckViewerDataViewSymbol);

PRINTING MULTIPLE ITEMS USING CURSORS

A new feature of Newton 2.0 allows users to handle routing tasks from the
overview. For instance, they can select multiple items and print or fax them.

Note that, by default, each entry in the cursor is added separately to the
Out Box. For view-type formats (printing/faxing) there is also a way to have
just the entry in the Out Box (for instance, if you want to print multiple
items on one page). See the Newton Programmer’s Guide for more details.

ADDING NEWTON 2.0 FEATURES TO YOUR APPLICATION

There are some important Newton 2.0 features that you should add to your
application, even if you don’t take advantage of all the new possibilities. You
might think of this as the “must have” list. These features are:
• Supporting screen rotation
• Rich text

Another feature that you should consider adding depends on the type of
application you have. If it makes sense for your application, you may also
want to add support for being a Backdrop app (Backdrop apps are discussed
later in this section).

HANDLING SCREEN ROTATION

In order for your application to run while the screen is rotated, it must have
a ReOrientToScreen method in its base view. This method gets called after
the screen is rotated.

Note that if your app view uses view justification (or if it calls
GetAppParams from the viewSetupFormScript), changes to the screen size
can be handled by a call to SyncView. Therefore, the ReOrientToScreen
method can often be as simple as:

app.ReOrientToScreen := func()
:SyncView();

end;

You will also need to consider the layout of your views when your application
is in a rotated state. Obviously, this will vary from application to application.
Some applications will need to change how their views are laid out extensively,
while others will adapt to the new orientation without much tweaking.

Newton Technology Journal November 1995

9

November 1995 Newton Technology Journal

10

RICH TEXT

Rich text is new to Newton 2.0. Rich text is text that is not recognized but
remains in ink form. The format of rich text is like a string, but with ink
words embedded (the kInkChar character specifies that a particular
character is actually an ink word).

Note that these ink words are stored at the end of the string. Thus, there
may be data in a string after the end of the last character.

Comparing non-rich and rich text
Your application should support rich text everywhere it makes sense. Don’t

skimp here: the more places your application offers rich text, the more useful it
will be to the user. For example, in a check-writing application, you might need
to recognize only the amount (to keep track of a running total) and the check
number (to check for duplicates and to sort by check number). Since other
fields need not be recognized (payee and memo, for example), they should
allow rich text. Another example is the built-in Names application. It allows
rich text for the last name but asks for a letter to use for sorting.

protoRichInputLine and protoRichLabelInputLine
These protos work much like protoInputLine and protoLabelInputLine.

To obtain the rich text in the proto, use the method GetRichString(). Note
that you should not read directly from the text slot.

Allowing rich text in other views
By default, paragraph views and edit views don’t support rich text. In

order to enable rich text, add a recConfig slot to the view. A predefined
configuration frame (suitable for recConfig) that will allow text or ink is
ROM_rcInkOrText. To obtain the rich text, use MakeRichString, passing the
value of the text slot and the value of the styles slot.

BECOMING A BACKDROP APP

In order for an application to become the Backdrop application, it should:
• be full-screen (otherwise, there will be blank parts on the screen outside

of the application).
• be able to rotate to “landscape mode” – although this is not an absolute

requirement.
• be prepared to never close. For example, it would be important when the

user changes some data to call EntryChange by means of a watchdog timer
rather than waiting until the user closes the application or scrolls to another
piece of data (the user may leave this data open for hours or days!).

NEWTON 2.0 TOPICS NOT COVERED

There are a number of other features that we are not covering here but you
should consider adding to your application. These features include:
• Extending your app with stationery
• DILs
• NCK
• Communications
• Extending Built-in apps using stationery

SUMMARY

In this article we covered the three different types of changes you need to
make to an application to bring it into the Newton 2.0 world. The easiest
and most crucial changes simply involve ensuring that it will run “as is” on a
Newton 2.0 machine. Next, we discussed some of the modifications to
existing Newton features that you will want to take advantage of in your
code. As many of the changes involve significant speed increases for the
user, they are well worth your time and attention. Last of all we covered
some of the new features that you will want to add to your application.

If you implement everything that we discussed here, you will be well on
your way to having a good transition application from the 1.x to the Newton
2.0 world.

NTJ

functionality is growing and maturing, and customers are employing it in ways
that will further enhance its evolution, and its business promise over time.

We’re thrilled to be able to bring you all of the latest news on the Newton
2.0 OS in this issue of the Newton Technology Journal. Our cover stories will
introduce you to all of the new features built into Newton 2.0, from a
marketing and business perspective as well as a technical one. We’ve
covered the critical issues around moving an application from 1.x to 2.0 and
gaining compatibility with your existing 1.x applications. We’ve also included
an article on the new communications features in Newton 2.0. Future issues
of this publication will cover additional areas of 2.0, including programming
in-depth, and will run features on whatever we find to be development
trouble spots – although we hope there will be none!

So, with this issue of NTJ and the recent Newton Development
Conference, we are proud to bring you the Newton 2.0 operating system.

We’ve worked long and hard on it and we’re proud of the growth and
changes our infant has gone through. We listened to customers and
developer feedback, and we’ve delivered on the next generation of the
platform. It is probably not yet a fully grown adult, but an adolescent full of
power, capabilities, flexibility, and the agility of youth. With this generation of
the Newton OS, users will more easily and more powerfully organize data,
communicate, and integrate with their desktop PCs. And it’s your Newton
2.0 applications that will help them do it. The Newton platform has
graduated from high school. We’ll look forward to seeing the new solutions
that harness its abilities and help launch it into a world of possibilities for
mobile professionals and the vertical markets.

continued from page 2

Newton 2.0 – Out of Infancy

Newton Technology Journal November 1995

11

INTRODUCTION

Newton 2.0 is designed with communications integrated throughout the
system software. In any Newton application the user will use similar interfaces
to dend information regardless of the medium he or she is using to send the
information. The general idea is, whatever you can see, you can send.

From a programming point of view, presenting a unified communication
interface appears complicated. Fortunately, the Newton’s communications
architecture is designed in a layered way, and there is a great deal of built-in
communications software that we can use, so that, unless your
requirements are fairly unusual, little new programming needs to be done.

Figure 1 shows the different layers in the Newton 2.0 system. Most of the
layers are in the NewtonScript level, but the communication tools are written
in C++. Within the NewtonScript layer there are five main pieces to the
system which are accessed from four separate APIs. We will look at these
layers one by one.

Figure 1: Newton Communications Layers

ROUTING

Newton 2.0 communications are built around a store-and-forward model,
with target data stored in the In/Out Boxes. Store-and-forward describes
how messages are routed (directed) to a distant communications object – or
from such an object to a Newton application – through an intermediate
holding area (the In/Out Boxes). Target data is any piece of information that
is routed in or out of the Newton.

The In/Out Boxes are a single application that provides a user interface to
view and manage messages, which are stored internally as a soup. Figure 2
shows what the In/Out Boxes might look like when there are messages
pending. Note that at any time the user can switch between In Box and Out
Box with the radio buttons at the top of the view.

Figure 2

Routing is usually triggered by adding the protoActionButton to a view.
The protoActionButton, when tapped, displays a picker showing available
actions (transports and routeScripts.) as illustrated in Figure 3. Some
applications will have one protoActionButton in the status bar; others will
have one in each of several views. The Names application, for example, has a
single Action button, since normally only one name at a time is viewed. The
Notes application has an Action button attached to each note, since there
may be many notes on the screen at any given time.

Figure 3

Each target object that is routed must have a class slot identifying the type
of data associated with this kind of object. Normally each application will
supply its own class of data for routing, such as 'Note or 'Form or the like.
This class is used by the system to look up (in the View Definition Registry)
the list of routing formats that may be used to route the data. From these
routing formats, the system creates a list of communications methods (faxing,
printing, beaming, etc.) that can route the target data. (These
communications methods, or transports, are discussed in more detail in the
following section.) The net result is that when the user taps the Action button

Communication Tools
Serial Modem MNP IR ATalkFax … …

Comm Tool DDK

Application

I/O Box

Endpoint Interface

Transports Transport API

Routing API

Comm Scripting API

Newton 2.0 Communications Overview: Peeling the Onion
by Bill Worzel, Arroyo Software, ArroyoSeco@eworld.com

Communications Technology

a list of destinations appear which are “possible” for the target data.
Figure 4 shows how this is stitched together. An application, usually in

the InstallScript, will install into the View Definition Registry one or more
formats named for the classes of data it will route. These formats will consist
of one or more dataTypes that describe what form the target data can take
when routed. The system uses this to search a list of installed transports;
when it finds a transport that supports one of the dataTypes, it adds the
transport name to the list to be displayed in the Action Button.

In Figure 4, the application has installed into the View Definition Registry
a frame, |forms:PIEDTS|, which supports two routingTypes of 'views and
two of 'frames. At least one of the types is supported by each of the built-in
transports for printing, faxing, beaming, and mailing, so these options appear
in the Action button. Note that it doesn’t pick up the transport whose
dataType is 'binary.

Figure 4

When the user selects a transport from the Action button, a routing slip is
displayed and all formats in which the data can be displayed appear in the
format picker, as shown in Figure 5. Formats are View Definitions that
describe how the target data should be organized before sending it to the
appropriate destination. When printing, for example, there may be several
formats – letter, memo, two-column, etc. – that describe how the target data
will be printed or faxed.

Figure 5

When the user selects a format for the target data and sends it off, the
appropriate transport is then messaged with information about the target
data, and it is placed the target data the Out Box for further disposition.

TRANSPORTS

The simplest definition of a transport is “something that routes your data.”
But a clearer definition is that a transport is a globally available service
offered to applications for sending or receiving data. Because of the global
nature of transports, it is not necessary, or even likely, for an individual
application to define a transport.

The built-in transports include printing, faxing, mailing, and beaming, but
one might imagine additional transports such as messaging (point-to-point,
real-time message passing), scanning, and even compressing, or archiving
data. Thus, while transports are usually associated with hardware (printers,
mail servers, and scanners, for example) they are not limited to hardware,
and a service may be offered that alters the data being routed without
sending it to any outside hardware.

Transports are built as “auto-load” packages; which means that they do
not appear in the Extras Drawer. Instead, a transport’s InstallScript registers
the transport with the system by calling the function RegTransport. As
described in the routing section above, if appropriate target data is routed,
the transport may then appear in the Action Button picker in an application
when the user taps the button.

Because most transports have communications code that will be used to
send or receive the target data, they will typically have communication
endpoint code that communicates with the destination.

Transports usually work with an application through the In/Out Box
application. Figure 6 shows the interactions between the NewtonScript
application, the In/Out Box, and a transport during a send request.

Figure 6

In/Out Box Transport
(User routes item(s)
to I/O Box)

SendRequest,
cause:’submit

(User sends item(s)
preivously routed to
I/O Box)

SendRequest,
cause:’user

(Transport
sends data to
destination)

ItemCompleted

(Out Box
removes item
from display)

ItemRequest

targetData:={
.

 class:’|forms:PIEDTS|
.
.
.

}

Routed Object

|forms:PIEDTS|:{
viewFormat:{dataTypes:’view
...},
faxFormat:{dataTypes:’view
...},
frameFormat:{dataTypes:’frame
...},
frameAndFormat:{dataTypes:[‘text,’frame]

...},
};

format2:{...}

format3:{...}

<etc.>

Routing Formats in View Definition Registry

[printTransport:{dataType:[‘view]
...},
faxTransport:{dataTypes:[‘view,’text
]...},
beamTransport:[dataTypes:‘frame
]...},
mailTransport:[dataTypes:’text,`frame
]..},
compressTransport:[dataTypes:’binary
]]

Installed Transports

November 1995 Newton Technology Journal

12

In particular, a transport receives a SendRequest whenever an item is
routed to the Out Box. The request sent to the transport has a cause slot
that describes why the transport was notified. In the case of target data that
is held in the Out Box, the cause slot will have a value of 'submit, indicating
that it is posted but should not be sent yet. If the cause is 'user or 'item,
then the transport should send the target data.

In either case, after processing a SendRequest message, the transport should
call ItemRequest to see if there are any further items posted in the Out Box.

A request to receive data, is a little more complicated. In the simplest case,
when the user selects a transport from the Receive button list in the In Box, the
selected transport is sent a ReceiveRequest message. The transport will connect
to the remote source, get any pending data, and add it to the In Box list.

In a slightly more complex situation, the transport may simply get a
description of what is available at the source (for example, the title of an
email message) and post it to the In Box. In this case, the transport must
add a remote slot to the request and set it to true. This flags the item so that
the In Box knows that the body of the data has not arrived. The user may
later select the item from the In Box and ask to see it, at which point the In
Box will send the transport another ReceiveRequest message, but with the
cause slot set to 'remote. The transport will then be responsible for getting
the body of the data so the In Box can display it.

As with sending a message, the transport should then check for other
pending receive requests by calling ItemRequest.

Note that ItemRequest is defined in protoTransport, so the transport
sends itself a message for the purpose of getting information from the
system – in this case, the next item to be transported.

As mentioned above, the main proto used to create a transport is
protoTransport. protoTransport is powerful and in many cases surprisingly
little code other than the actual endpoint code needs to be written. This is
because the defaults typically “do the right thing” to provide an interface and
default behavior for the transport.

In particular, tasks such as displaying the status of a routing request,
logging of routed items, error handling, power-off handling, and general user
interfaces are handled well by the defaults if the transport simply sets or
updates a few slots when appropriate. Only the actual service code (such as
communications) will be different between transports.

The key methods and variables that are usually implemented in a
transport are as follows:

status // used to display the status of a routing
// request sent to a transport, set using the
// method: SetStatusDialog

actionTitle // title that appears in the transport’s
// routing slip

appSymbol // the transport’s symbol, used to match the
// transport with the item being transported

icon // icon that appears in the transport’s
// routing slip

SendRequest // message sent to the transport from
// the In/Out Box data when item posted
// or requested to send out

ReceiveRequest // message sent from the In/Out box to
// receive or to complete receipt of
// items previously received in summary
// form

CancelRequest // method to stop transport of data
NewItem // message from the In/Out Box to create an

// item for display in the In/Out Box, usually
// overriden by a transport to add transport
// specific information about an item

ItemRequest // message sent by the transport to self
// to request next item pending in a
// send/receive action

ItemCompleted //message sent by the transport to

// self to notify the system item
// transport action (send/receive) has
// finished

In addition to these methods and slots, there are many other features
that may be added to a transport to augment or override user interface
features controlling the display and format of data being transported or the
action of the transport.

The DTS sample ArchiveTransport shows a minimally implemented
transport that provides a global, frame-based transport for archiving frame
information in an “archive soup.”

ENDPOINTS

Endpoints are the primary API for programming communications on the
Newton in NewtonScript. They provide a “virtual pipeline” for all
communications. Endpoints are designed to hide the specifics of a particular
communications media as much as possible, and once connected, present a
generic byte-stream model for input and output.

Endpoint code to receive data from an AppleTalk network can be
identical to code to receive data through a modem, which can be identical to
code to receive data over a serial line, etc. Things such as packetization –
which occurs in any network protocol – are hidden from the endpoint user
during sending and receiving, as are flow control, error recovery, etc.

The only exceptions to this rule occur when there are specific hardware
limitations that cannot be hidden by the endpoint API. For example, IR
beaming is a half-duplex protocol (that is, it can send or receive, but not
both at the same time) while serial, AppleTalk, or modem communications
are all full-duplex (that is, they can send and receive at the same time).

Of course, while sending and receiving are media-independent, the
connection process is necessarily tied to the media being used. So, for
example, with AppleTalk it is necessary to specify network addresses; for
modem communications, a phone number; for serial communications,
speed, parity, stop bits; and so on.

Figure 7 shows the life cycle of an endpoint. An endpoint is initially defined as
a frame in an application that is based on the protoBasicEndpoint proto. This has
several slots describing the settings of the endpoint and methods that may be
called by the system during the course of its existence. However, this frame is not
an endpoint. That is, it describes what an endpoint might look like, but it is not a
NewtonScript object. To create such an object it must first be instantiated. Note
that since the objects used most often in the Newton OS are views, and since the
view system automatically instantiates the view object when it is opened, we
usually don’t see much instantiation code in apps. But with an endpoint, because
it is independent of the view system, we must explicitly instantiate it to create an
endpoint object.

Figure 7

Life Cycle of an Endpoint

EP:Instantiate()
EP:Bind()
EP:Connect()
EP:Output.()/SetInputSpec()
EP:Disconnect()
EP:Unbind()
EP:Dispose()

Note: EP is a fictitous reference to a NewtonScript frame
which is based on protoBasicEndpoint

Newton Technology Journal November 1995

13

Once the endpoint is connected, it should be bound to a particular
address, node, etc., depending on the media. An AppleTalk endpoint, for
example, is bound to a node on the network. This is done by sending the
endpoint the Bind() message.

After binding the endpoint, the Connect message is sent to connect to
the particular media being used. For a remote service that is accessed
through a modem endpoint, the endpoint would dial the service and
establish the physical connection (but not protocol items such as logging on,
supplying passwords, etc.; these are part of an ongoing dialog that the
application and the service must engage in once connection is established).

The endpoint method Listen() may be used to establish a connection
instead of the Connect() method. In this case the endpoint is connected
and ready to listen to an “offer” by the communications media. Based on
the the particular situation with the remote media, an application may either
reject the connection by sending the Disconnect() message to the endpoint,
or accept it with the Accept() message.

After connecting, the endpoint is ready to send and receive data.
Sending is fairly straightforward and is done by using the methods Output()
and OutputFrame().. The latter method is used to send Newton frames to
other entities that understand this data format, the former is used to send all
other kinds of data. Such calls may be made either synchronously or
asynchronously.

Receiving data is a little more complex. Incoming data is buffered by the
system below the application endpoint level. An application must set up a
description of situations to trigger processing of incoming data. This
description is in the form of an inputSpec. For example, an inputSpec could
be created which looked for the string “login:”, or it could be set to trigger
when 200 characters were received, or after 100 milliseconds. To some
extent it can be set to notify the endpoint of incoming data after a
combination of these events (e.g., after the string “login:” is seen or after 100
milliseconds, whichever comes first).

When an inputSpec input condition is met, an appropriate message is
sent to the endpoint. This message differs depending on the cause of the
trigger; for example, a PartialScript message will be sent if the condition
causing the event is a 100-millisecond wait, while an InputScript message will
be sent if a specified string has been received or character limit reached.

At any given time, the endpoint will have only one inputSpec active. By
default, the active inputSpec will remain active until told otherwise.
InputSpecs are activated by sending the message SetInputSpec() to the
endpoint with a reference to an inputSpec frame.

By chaining inputSpecs together, a communications state machine of
arbitrary complexity can be created. For example, before connecting to a
service, an application might call SetInputSpec() with an inputSpec that
looks for the string “login:”. Once that string is seen, the InputSpec()
method within the inputSpec might call InputScript () to activate an
inputSpec that looks for the string “password:”. When this string arrives, the
InputScript code might call SetInputSpec to activate an inputSpec that
triggers every 100 characters or when a carriage return character is received.
In this way, endpoints can be used to build a communications protocol
based on expected behavior of the service.

Endpoints deal with different forms of data well. Since the Newton uses
Unicode (16-bit) character representations, and since most systems still use
ASCII, character strings sent or received through endpoints will do a Unicode-
to-ASCII and ASCII-to-Unicode translation by default. This default may be
overidden by adding an encoding slot to the endpoint with a system constant

describing a translation table to be used for all character data.
At a slightly higher level a data form may be used to convert incoming or

outgoing data as appropriate. Figure 8 shows a list of the data forms that can be
used to format incoming or outgoing data. These forms control how the data will
be treated with, for example, 'char and 'string forms going through translation
table mappings, with 'number being interpreted as a Newton 30-bit integer.

Data Form Description
'char Default value for sending characters, does

ASCII-to-Unicode or other translations based
on encoding slot.

'number Converts to or from 30-bit integer.
'string Default for sending and receiving strings,

Unicode-to-ASCII conversion is done unless
overridden by the encoding slot. Termination
character is added to the string.

'bytes A stream of single-byte values. No translation is done on
the values.

'binary Used to receive or send raw binary data.
'template Used to exchange data with a service that expects C-type

structures.
'frame The data is expected to be a frame. For output, the frame

is flattened into a stream of bytes prior to being sent; for
input, the byte stream is unflattened and returned as a
frame. Particularly useful when beaming or
communicating with a desktop machine using DILs (DILs
are descibed below).

Figure 8

Perhaps the most intriguing of these data forms is the 'template form,
which can be used to map a series of data values into different formats in the
same way a C-structure describes how to read successive values in memory.
This is also used to describe endpoint options – the state settings for the
endpoint – when creating or modifying the endpoint object.

When an application is done sending and receiving data and wishes to
tear down the endpoint, there are messages that may be sent to an endpoint
to break down the state built up during the process of connecting and
communicationg with the media.

The first step is to terminate any outstanding inputSpecs by sending a
Cancel message followed by a SetInputSpec() message with a nil inputSpec.
This terminates the current inputSpec and establishes the fact that no more
input will be accepted.

Then, the connection is broken by calling the Disconnect() method.
Next, the Unbind() message is sent to break the address association

between the endpoint and the media.
Finally, a Dispose() message is sent to destroy the endpoint object. Note

that the endpoint may be left instantiated or disconnected if it is anticipated
that it may be reconnected later in the life of the application.

LOW-LEVEL COMMUNICATIONS TOOLS

Below the NewtonScript level there are built-in system tools that provide
basic communications functionality. When an endpoint is instantiated, one
of the things that must be defined is the type of the endpoint. This
definition causes the endpoint to be connected to one of the existing low-

November 1995 Newton Technology Journal

14

level tools that are written in C++ and run in a separate task thread.
While the details of these tools are beyond the scope of this article, at

some point Apple will release the necessary programming interfaces and
tools to support the development of third-party communications tools.

DILS

Not shown in the diagram in Figure 1, but still important to Newton
communications programming, are a set of libraries called the Desktop
Integration Libraries, or DILs. The first and most important thing about DILs is
that they don’t run on the Newton. The DILs are libraries for Macintosh and
Windows development environments, and are used to create apps which can
establish a communications link between Newtons and desktop machines.

Figure 9 shows this relationship. Essentially, endpoint code on the
Newton, whether hooked directly to an application or via a transport, sends
data from the Newton to a desktop machine. On the desktop machine, an
application that uses the DILs sends and receives data which is then
displayed on the desktop machine. Currently, DILs are available for Mac OS
and Windows platforms.

All of the DILs are libraries written for C. On the Mac OS platform, there
are MPW, Think C, and MetroWerks libraries. On the Windows platform,
DILs are implemented as a DLL and therefore should be independent of
particular C language implementations.

Figure 9

The DILs’ main feature is that they abstract the connection to the Newton
to a virtual pipe for bytes, and they provide control over things such as
ASCII-to-Unicode conversions and Newton data structures and types such as
frames and 30-bit integers.

As shown in Figure 10, there are three DILs which build off of one another:
CDILs, FDILs, and PDILs. CDILs provides basic connectivity to a Newton. To
use FDILs and PDILs, you must use CDILs to establish a connection. FDILs
provide a relatively simple way to map NewtonScript frames to C structures
and also provide a mechanism to handle data that was added dynamically to
the frame. PDILs provide an easy mechanism for synchronizing data between a
Newton application and a desktop application. As I write this, PDILs are not yet
available, but will be available in the future.

Figure 10

CDILS

CDILs essentially have the following phases: initialization, connection, reading
or writing, disconnecting (sound familiar?). The idea is to create and open a
virtual pipe to the Newton and then communicate using some predetermined
protocol by sending and receiving messages or data down the pipe.

The CDInitCDIL function must be called before anything can be done
with CDILs. On Windows machines, the routine CDSetAppplication must be
called next. There is no equivalent call on the Macintosh. Next, the routine
CDCreateCDILObject() is called to create a CDIL pipe. CDCreateCDILObject
returns a pointer to a pipe; this pointer must be used for all subsequent calls
involving that pipe.

CDPipeInit initializes a pipe object so that it is “open for business.” In
particular, it defines the communications options, including the media details
such as connection type (serial, AppleTalk, etc.) and relevant media options
(speed of connection, dataBits, modem type, etc.).

Next, the pipe waits for the connection from the Newton using the
function CDPipeListen. When the Newton contacts the desktop machine,
the application using the CDIL may accept the connection by calling
CDPipeAccept. At any time in this process the desktop application can
cancel an attempted connection by calling CDPipeAbort.

Once a connection is established and working, data can be sent and
received using the routines CDPipeRead and CDPipeWrite. As with most
CDIL routines, these calls may be made either synchronously or
asynchronously with a callback routine. (Mac OS programmer note:
callbacks are not executed at interrupt time, so they are not subject to the
restrictions placed on code running at interrupt time.)

From this point on, the desktop application and the Newton application
will probably engage in an application-specific protocol where there will be a
predictable exchange of messages and data via the CDIL’s virtual pipeline.

When the decision is made to terminate the connection, the routine
CDPipeDisconnect may be called. Once this function has completed, the
connection has been broken and both sides must reestablish the connection
before any more data can be sent or received.

Finally, when the desktop application is completely finished with the
pipe, it must call the functions CDDisposeDILObject to tear down the pipe
and CDDisposeCDIL to clear the CDIL environment.

FDIL
FDIL, or Frame Desktop Integration Library (also called HLFDIL for High
Level FDIL), is used to support transferring NewtonScript objects to and
from the desktop in an orderly fashion. A CDIL connection must be
established, and is used to transfer frames.

Before FDIL calls can be made to move information to or from the
Newton, the FDIL routine FDInitFDIL() must be called to initialize the library.

The simplest use of an FDIL is to map NewtonScript frames into C
variables. If the frame shown in Figure 11 is going to be uploaded to a
desktop machine, the desktop application can use FDILs to map this frame
into the C structure shown in the figure.

aFrame:={ slot1:'b,
slot2: { slot1:24,

slot2:{slot1:16,
slot2:$c}

}
slot3: "TROUT"}

struct {
char slot1[5]; // whatever symbol length
struct slot2 {

PPPPPDDDDDIIIII LLLLL (((((PPPPPrrrrroooootttttooooocccccooooolllll DDDDDIIIII LLLLL)))))

FFFFFDDDDDIIIII LLLLL (((((FFFFFrrrrraaaaammmmmeeeeesssss DDDDDIIIII LLLLL)))))

CCCCCDDDDDIIIII LLLLL(((((CCCCCooooommmmmmmmmmuuuuunnnnniiiii cccccaaaaatttttiiiii ooooonnnnn DDDDDIIIII LLLLL)))))

Newton

(Endpoint Code)

Desktop Mac hine
(Windows or

Mac OS)

(Application built
using DIL code)

Newton Technology Journal November 1995

15

November 1995 Newton Technology Journal

16

long subslot1;
char subslot2;

};
char slot3[32]; // whatever max strlen

}

Figure 11

To build the mapping between the NewtonScript frame and the C structure,
make repeated calls to FDbindSlot. These calls match a Newton slot name
(or an array object) to a C variable or buffer. Part of the call is a maximum
size to ensure that the capture of the NewtonScript object does not overflow
the memory reserved for the C variable.

In this example, there would be repeated calls to FDbindSlot, each of
which would specify a slot name for an element in the frame and the address
of the C variable or – in this case – structure member. Once this is done, the
data can be transferred by calling FDget. When the Newton sends the frame
data (presumably by calling OutputFrame) to the desktop, the FDIL will
move the data into the appropriate locations on the desktop machine.

If data were to be sent to the Newton, the desktop application would call
FDput to send the data at the addresses specified by the FDbindSlot calls to
the Newton in a flattened frame format that the Newton can understand. In
this case, on the Newton side it would be expected that an inputSpec would
have been established which expected a data form of 'frame.

This is the easiest and most efficient way to move data to and from the
Newton, but since NewtonScript frames can change dynamically, there needs
to be a way to get information from the Newton which the desktop
application may not have known about when the initial binding took place,
or new information created after binding. This is done by transferring data
to the desktop machine into a dynamic tree structure that can be parsed by
the desktop machine. This data is called unbound data.

As before, a CDIL connection must be established; then, a call to FDget will
transfer any data. If any of the data transferred is bound, it will be put in the
appropriate location. Otherwise, it will go into dynamically allocated memory.

To get the unbound data, the routine FDGetUnboundList returns a pointer
to a tree. This tree is organized with a branch for each element in the
structure on the Newton. The list structure is an array of elements, each of
which in turn may be a list of elements if the particular branch has sub-
elements. For example, if the Newton frame shown in Figure 11 were brought
into the desktop machine in an unbound form, there would be three
branches (one for each element). Branch two would have two sub-branches,
and branch two of branch two would have two branches.

Using this structure, you can write code to parse and use the unbound
data. After the desktop application is done with the unbound data, it should
be disposed of by calling FDGetUnboundList.

Examples of CDIL and FDIL usage can be seen in the DTS sample
SoupDrink, which transfers the contents of any soup on the Newton to the
desktop or sends frames from the desktop to the Newton.

NTJ

NTJ

Newton
Communications –
A Point of View
by Eileen Tso, Apple Computer, Inc.

As the Communications Evangelist for the Newton platform,
whenever I discuss the 2.0 operating system and its
improvements beyond the 1.x communications story, I am
proud to hear myself tout that our operating system uses an
extensible architecture which allows for advanced
communications capabilities and features.

I hope you’ll notice that we have moved toward a truly
modular system. Our architecture is “layered,” and provides
access to built-in tools that now exist for you. The I/O box,
transports, and endpoints of 2.0 are just a glimpse of how we
plan to continue moving our comms architecture forward,
enabling you to write more powerful applications – as
explained in the accompanying article.

To be fair, and ensure that we maintain a realistic level of
expectation, we must acknowledge that it’s imperative for us
to continue this forward momentum. A lot of you are
probably anxiously awaiting the release of our DDKs (driver
development kits), and those are on their way. By the same
token, a lot of you would also probably appreciate a TCP/IP
stack for your comms solutions. Be assured, a TCP/IP stack is
also on its way. Other issues, such as memory restrictions and
more than one PC Card slot are, as you’re well aware,
hardware-dependent. And with the emergence of our 2.0
operating system, I think we’ll all be watching for new
hardware devices from Apple and our licensees which will
enable us to really take advantage of the new communications
functionality in 2.0.

I think you’ll agree that we’ve made significant strides in
our communications story, and I’m only the first to say that
there are still issues to conquer. But as we continue to take
these steps forward, I hope you’ll agree that we really are
moving in the right direction. As your first point of contact for
communications-related development, please don’t hesitate to
let me know if you think otherwise!

Our objective is to make it easier for you to help us to
complete our communications story, and I feel very strongly
that we’re making improvements towards that goal. We learned
a great deal as we encouraged development of comms
solutions for our 1.x product, and based on those insights, I’m
proud to say the 2.0 realm has brilliant possibilities!

Newton Technology Journal November 1995

17

If any single idea served as the guiding principle in the development of the
Newton 2.0 user interface, it was this: listen to the customer. The feedback
from Newton 1.x users, developers, analysts and the press fueled every
phase of the re-design. Leveraging two years of feedback, from our own user
studies and from the field, the Newton team set out to enhance an already
acclaimed UI and to address whatever shortcomings existed. Despite greatly
expanding functionality, the team strove to maintain the simplicity that is the
essence of Newton’s design. In short, the goal was to keep the best and fix
the rest.

This overview examines what has changed in the new user interface,
what prompted the changes, and how those changes have been received by
users. It will not touch on every UI change in Newton 2.0. Instead, it
highlights some of the more important changes and gives some of the
rationale behind them.

Central to the user complaints about Newton 1.x were problems
surrounding data entry. Recognition received its share of criticism, but other
areas also frustrated users: difficulty writing in fields and expandos, lack of
readability, problems with correction, memory problems (especially when
using ink), a sense of UI inconsistency between applications. In short, there
was a perceived lack of precision and predictability when it came to getting
information into the MessagePad.

Therefore, an overarching goal of Newton 2.0 was to ease data entry,
manipulation and viewing. Handwriting recognition, still an emerging
technology when Newton launched in July 1993, has made big strides over
the past year and a half. So too has the effort to find alternatives to
recognition. The pervasive use of pickers, a new default font, greater
support of electronic ink, and the introduction of “remote writing” all serve
to help users get data into their Newton devices, and to make it useful once
it’s there.

Another overarching goal in the redesign process has been to establish
greater consistency, in both look and functionality. System fonts, styles, and
slip layouts all conform to a single style, thereby maximizing readability and
ease of use. Functionality, too, has been generalized throughout the system:
“New” and “Show” buttons have been generalized throughout applications,
keyboard and recognition buttons are ubiquitous, routing and filing are
supported in nearly all areas (including the Extras Drawer).

RECOGNIZE THIS!
Perhaps the most widely heard comment during user tests of Newton 2.0 has
been how much recognition has improved. Experienced users perceive
enhanced recognition performance using both printed and cursive
handwriting styles; new users are impressed by how much better recognition
is than they expected. Better accuracy is evident across the board: text and
numbers, dictionary and non-dictionary words, and punctuation.
Improvements stem in part from better algorithms, larger dictionaries
(roughly 90,000 words at press time), less constrained recognition in fields,

and an expanded character set.
Still, even with the improvements in recognition performance, studies

show that there will continue to be a subset of users who do not have success
with recognition (because of handwriting idiosyncrasies or other inhibitors).
For those users, Newton 2.0 features a number of recognition alternatives.

In terms of user interface elements to control recognition, the
recognition popup has evolved – from a three-button toggle to a popup
(fig. 1). This design has many advantages including clarity and extensibility,
as well as providing access to handwriting preferences. While the popup
adds a tap in most cases, usage patterns suggest that users tend to leave the
recognition control in a particular setting. (The need for momentary letter-
by-letter setting was eliminated by advances in recognition.)

Fig. 1 – screen shot of rec pop

Another key improvement is the addition of remote writing. This feature,
manifested by the caret (fig. 2) which indicates where a word is placed,
solves the problem of unpredictability of word placement in Newton 1.x.
With the caret, there is no ambiguity or guesswork involved. The user can
write wherever it is comfortable to write and know with certainty where the
recognized text will appear. Editing, too, is made easier. For example, if you
want to replace a word in the middle of a paragraph, all you do is select the
word and then write anywhere on the screen and the word is replaced. In
Newton 1.x, the task of scrubbing, inserting space, and rewriting was often
daunting to users. Users are extremely keen on this feature: “I love the fact
that you know where the insertion point is! It makes editing and work
addition so much easier, not to mention the punctuation marks.”

Newton 2.0 User Interface – Making the Best Better
by Garth Lewis, Apple Computer, Inc.

New Technology

Fig. 2 – screen shot of caret

The corrector popup (fig. 3) has also been enhanced. Thanks to
recognition refinements, if a word is misrecognized, the alternate word list is
much more likely to contain the correct word. In addition, a new letter-by-
letter correction tool provides the user a larger writing area in which to
overwrite letters, correct segmentation problems, and so on. Research
shows that many Newton 1.x users relied on the keyboard to correct
misrecognized words. In Newton 2.0, overwriting is the first line of defense
and the new corrector is a welcome fallback. As one user said, “The
corrector is much preferred to the old method of just getting the keyboard,
because previously, I would often have to use the arrow keys a lot to get to
the character I wanted to correct. This makes it easier.” The new corrector
is especially useful when using smaller fonts (which makes overwriting more
difficult). It also offers access via popups to letter alternates. The new
corrector can also be used for bulk correction. In this scenario, the user
leaves the corrector open and taps the words to be corrected. Developers
can define corrector templates for different types of data (dates, times, etc.).

Fig. 3 – screen shot of new corrector

Other recognition changes include an improved “add word to word list”
UI, a new word-expansion feature, and the addition of the highly readable
“casual” font (which aids overwriting). Two new handwriting gestures were
added: a backwards “L” creates a carriage return, and a “V” drawn at the base
of two words will adjoin them.

INK TEXT? NOW THIS I LIKE!
Newton 2.0’s UI strategy continues and enhances the original Newton
approach of offering the user a variety of data entry methods and correction
tools for different situations and needs. “Ink Text” (fig. 4) is a critical addition
to that arsenal. Ink text is supported in virtually all entry fields in Newton 2.0
and, with few exceptions, ink text and text are interchangeable and can be
combined freely. Ink is now displayed in the overview, for example.
Advantages include ease of data entry, avoiding recognition, and speed. Ink
text also has some memory savings over Newton 1.x ink. Developers are
encouraged to support ink in any entry fields in their applications.

Fig. 4 – screen shot of ink text

Early user feedback on ink text is extremely positive. “Now this I like,”
exclaimed one first-time user. “I love it. I am much more productive and
can fit more on the screen with the shrinking feature,” says a veteran user.
The wrapping and editing capabilities, combined with deferred recognition,
allow users the flexibility of text with the ease of input of ink. “The new
improved ink is a blessing,” said one power user. Users find ink text
especially useful in time-constrained situations (for note-taking at meetings,
listening to voice-mail, etc.). Even name cards can be entered in ink (the user
is asked under which letter to file it). While some users will choose not to
use the feature because they require searchability or value the way
recognition “cleans up” their handwriting, others will use it exclusively. As
with pickers, ink text provides the user with an option to avoid recognition
when the situation demands. “I can read my own handwriting where
someone else (or the Newton) can’t,” explains one user. “Why argue with
the Newton over word recognition when just jotting down a note is the
desired purpose? It also has the personalized feeling of a handwritten note.”

A PROLIFERATION OF PICKERS

One of the first things the new user experiences in Newton 2.0 is a sequence
of screens (fig. 5) that helps to configure the Newton device. The purpose
of the “setup” sequence is threefold: to allow users to enter the basic
information they need to start getting work done; to introduce a variety of
UI elements; and to help make their first experience with the product
positive and productive. Cartoon-like graphics enliven what is essentially a
fairly straightforward task. The end result, according to users, is a positive
first impression, increased confidence, and a better out-of-box experience.
As users themselves put it: “It leaves good, productive feelings about my first
contact.” “There’s no question that this is a much better way to greet a new
user than the previous ‘blank’ (normal) Newton screen.”

November 1995 Newton Technology Journal

18

Fig. 5 – screen shot of Welcome screen

In the setup sequence, the user is first exposed to an important Newton
2.0 UI enhancement: pickers. As in Newton 1.x, pickers allow the user to
enter information in a way that is fast, fun, and intuitive. They have the
added advantages of being easy to target and taking up minimal real estate.
In Newton 2.0, the number and types of pickers have proliferated: date
pickers, time pickers, location pickers, people pickers, list pickers and
number pickers. Each of these pickers provides an alternative to recognition
as a means of data entry. In most cases, the task can be accomplished in a
couple of taps. As a power user remarked: “The pickers (in Newton 2.0) are
a great leap forward.”

The time (fig. 6) and year pickers display many of the pickers’ attributes.
The numbers are bifurcated to allow ease of targeting. Users like the
readability and ease of manipulation they afford. Said one user: “It’s easier to
change it than trying to hit little arrows.” The function of these pickers is not
necessarily intuitive for all users, but the vast majority find their function to
be easily learned and retained. Designed initially to replicate the old
“mechanical digital” radio/alarm clocks, the look of the date/time pickers
evolved so that only the flipping numbers remain.

Fig. 6 – screen shot of time picker

The people picker proto (fig. 7) offers users access to their Names data
and the ability to make a persistent list of selections.

Fig. 7 – screen shot of people picker

The city picker (fig. 8) combines A-Z tabs and a diamond popup to access
a large amount of data.

Fig. 8 – screen shot of city picker

Fig. 9 – screen shot of paper roll with New button popped up

STATIONERY, BUT NOT STANDING STILL

One of the key additions to Newton 2.0, the advent of stationery, is
facilitated by the New button popup (fig. 9). Status bar buttons that access

Newton Technology Journal November 1995

19

popups (signified by a diamond in the button itself) provide built-in
extensibility for developers. The New button also answers a common user
request for instant access to the end of the paper roll. Users have found the
New button to be an intuitive “create” button and it has been generalized to
other parts of the OS as well. “The New button is a welcome addition,” said
one user. “And it will be very helpful when users are viewing things that are
not at the bottom of the paper roll.”

Among the three stationery types that ship with the Newton 2.0 software,
“Note” is the most familiar to Newton 1.x users. Even Notes are different,
however. The icon at the left of the separator bar (fig. 10) acts not only as an
identifier of stationery type, but as a mechanism for the titling of individual
notes (oft-requested by users). The slip also contains pertinent information
about the note (date and time of creation, size, and store).

Fig. 10 – screen shot of titling slip open

The checklist and outline stationery (fig. 11) provide the user with
enhanced list-making capabilities. The bullet point allows the user to
distinguish between discrete items and to create and collapse hierarchical
lists. The three-button floating palette is comprehended immediately by
both naive and power users. These list stationeries add much more
precision and predictability to list-making, another common user request. As
one user explained: “An integrated outliner might justify the purchase of a
Newton all by itself.... It seemed to work very intuitively.”

Fig. 11 – screen shot of outline stationery with sample data

Users seem to appreciate immediately the potential of the stationery
metaphor. “My imagination is racing with ideas for other kinds of stationery
– an excellent third-party opportunity.”

The current date and time are now displayed in the upper left corner of
most apps, replacing the spring-loaded clock on the status bar. The new
approach brings more information to the top-level and frees up valuable
space on the status bar.

In place of the analog clock, there is an “i” button (the international
symbol for information). This new button (fig. 12) has various advantages:
the user can access application-specific help and preferences, it’s extensible,
and it localizes well.

Fig. 12 – screen shot of “i” button

The addition of icons within popup menus (the New and Show buttons,
the routing icon) is a way to establish distinct identities for the various
elements as well as providing some visual appeal (fig. 13).

Fig. 13 – screen shots showing icons in New button and Action button

SO LITTLE TIME...

Another part of the OS to receive extensive reworking is the Date Book. The
graphically-enhanced New button provides the user access to a variety of

November 1995 Newton Technology Journal

20

meeting and event types, and to-do items. The user can enter data into a
slip, or write directly into the calendar’s day view as before. In the slip (fig.
16), users can take advantage of a variety of pickers to select the date and
time, choose invitees and location, set alarms and frequency. The title field
features a picker and increased line spacing. A Notes button in the slip
accesses a scrollable notes area.

Fig. 14 – screen shot of dates slip with picker open

The greater use of pickers, the increased line spacing, and recognition
improvements in general makes data entry much easier than in Newton 1.x.
In addition, the slip/picker approach helps raise what had been buried
functionality. Instead of navigating slips buried inside other slips, the user
gains accessibility and a greater sense of place.

The Show button (fig. 15) provides the user with a more precise way to
access various views of their data. It is used to access day, week, month, and
year views, to display the to-do list and Day’s Agenda, and as a shortcut to
today’s date. In Newton 1.x, the way to access various views was not always
obvious to users.

Fig. 15 – screen shot of Show button popped up

In the day (fig. 16) and week views, a meeting-type icon sits next to the
duration bar. The user can tap the icon to open the meeting slip, and tap
and drag to move the meeting. The duration bar is used exclusively to affect
the length of the meeting. The result is a simplified UI, where no single
element is over-burdened with functionality. As a user commented, “It’s

better to allow movement of an appointment only by touching the icon, and
to change time with the duration bar. It’s just easier.”

Fig. 16 – screen shot of day view

In another example of addition by subtraction, shape recognition is not
allowed in the calendar, except in the Notes area. Without shapes getting in
the way of recognition, data entry is made easier.

The Day’s Agenda (fig. 17) combines the meetings, events and to-dos
into a single view. This feature was created in direct response to user
requests to see all their pertinent information in one view. It also allows the
user to display unlimited events, since real estate is not an issue. (The crib
area – the upper left corner – in the Day view limits the user to seeing three
events, after which a more events indicator is displayed.) User response to
the Day’s Agenda has been enthusiastic. One user put it succinctly, “I love
the Day’s Agenda. It’s awesome.”

Fig. 17 – screen shot of Days Agenda with data

Other Date Book enhancements: the first day of the week is user
configurable, new AM/PM indicators, ink support, scrollable overview,
default alarm times for meetings and events, and the ability to store all new
items internally.

In sum, users value very highly the UI enhancements made in the Date
Book as well as its integration into the rest of the unit. “It’s greatly
improved.” “I love the amount of information that can be entered about a
meeting. A+.”

Newton Technology Journal November 1995

21

Fig. 18 – screen shot of To Do list

...SO MUCH TO-DO

The redesign of the To Do List (fig. 18) reflects a strong user demand to
make it more robust and easier to use. The interface has been standardized
so that it more closely follows the UI norms elsewhere in the system. Entries
are made in slips equipped with wider line spacing. Pickers allow access to
key functionality. The user creates to-do tasks by tapping the ubiquitous
New button and displays the list using Show. Once in the list, the to-do icon
is used to access the slip itself; the priority popup is moved a level deeper.
Deleting to-do items (a Herculean feat in Newton 1.x) is made trivial.
Implementing in list view rather than edit view has reaped other advantages,
including speed. Additional features including reminders, repeating tasks,
and date selection are all accessed via picker at the slip level. The result is a
more useful and usable to-do list which maintains its top-level simplicity.

SYSTEM-WIDE IMPROVEMENTS

Local preferences (fig. 19) can now be accessed through the ubiquitous “i”
button. An “always store new items internally” check box helps to mitigate
the common problem of managing, or mismanaging, data between cards and
the internal store.

Fig. 19 – screen shot of local prefs slip

Filing, too, has seen extensive revamping. Global and local filing
capabilities give the user more flexibility in terms of organization. The filing
slip (fig. 20) itself has been redesigned to preserve real estate. A “New”

button accesses a slip with greater room for text entry, a delete button, and a
global/local checkbox.

Fig. 20 – screen shot of new filing slip

Slips now have a dragging affordance, called a “picture hanger” to
mitigate some of the problems associated with the previous implementation
– lack of self-evidency, inadvertent movement of slips, etc.

Some of the system changes were made to provide the user with more
feedback. The duplicate function has new animation and sound effects.
Alerts have a neon-like border. A busy indicator (the Newton light bulb) lets
the user know when the unit is working. A “comm” indicator (a five-
pointed star) alerts the user to a variety of communication- and recognition-
related events.

Local scrollers (fig. 23) have been added to several areas, primarily to
allow a way to scroll within scrollable applications. In the calendar there was
an urgent need for a “more” indicator, an indicator to show that more data
exists off-screen. The solution was to provide local scrollers which allow the
user to move from hour to hour while the universal (silk screen) scrollers
move from day to day (as well as month to month.) The local scroller arrow
is black if tapping it will bring more items into view.

Fig. 21 – screen shot of local scrollers with one arrow black

The keyboard icon opens a popup (fig. 22) on the second tap, rather
than cycling through multiple keyboards. Advantages: faster access, fewer
taps, extensibility.

November 1995 Newton Technology Journal

22

Fig. 22 – screen shot of keyboard popup

A variety of new sound effects provide the user with feedback. Pen taps
produce a random series of “plops” that one user likened to raindrops. “It
makes navigating around much less monotonous.” Other user favorites
include the squeaking sound for attaching items to the clipboard and the
calculator’s “adding machine” feedback.

Alarms have been upgraded – they are persistent and contain a snooze
button with a popup for snooze durations (fig. 23). Also notice the new border
for alert slips.

Overviews (fig. 24) now support multiple selection, routing and filing. A
gray line separates the check boxes from user data.

Fig. 23 – screen shot of new alarm slip with snooze popped up

Fig. 24 – screen shot of overview

The two-level undo of Newton 1.x has been replaced with a more
standard undo/redo feature. As one user said: “This is really the best way to
implement this!”

Routing slips (fig. 25) have a new graphical look, an envelope metaphor
that extrapolates from the routing icon.

Fig. 25 – screen shot of new mail slip

Newton 2.0 introduces the ideas of multiple personae and worksites.
Mimicking the Names interface, this feature (fig. 26) allows the user to
switch personalities and locations painlessly. Users can have both a
“corporate” and “freelance” persona, for example, by creating a second
Owner card. Or, they can set up additional worksites for home or work with
dialing prefixes, printer information, etc.

Fig. 26 – screen shot with worksite card view

EXTRAS! EXTRAS!
The Extras Drawer (fig. 27) is much more robust and easier to manage
thanks to new functionality. Filing is now supported, as is multiple selection
and deletion. With the addition of application-specific filing, users can
configure their file folders in a way that makes sense to them. You can drag
icons around, file them, move them to cards, and examine the data (in the
“Storage” folder). The new bifurcated folder popup allows users to view
internal and external stores, together or separately.

The UI for selecting Extras items is the same as selecting anything else in
Newton – hold down the stylus until the ink blob appears. The user can drag
through it, circle select or just tap and hold on the icon. Users who complained

Newton Technology Journal November 1995

23

of Extras Drawer overcrowding can now accumulate shareware apps to their
heart’s content. The extras drawer now supports overview and scrolling as well.

Fig. 27 – screen shot of Extras Drawer with filing slip open

Newton 2.0 also allows the user to choose any application, built-in or
otherwise, to be the backdrop for their Newton device. By selecting an
item in the Extras Drawer and tapping the routing slip, the user can
configure their device so that their favorite third-party software acts as the
backdrop (fig. 28).

Fig. 28 – screen shot of “Make Backdrop” popup

You’ll also notice the addition of a Rotate button in the Extras Drawer.
This button will allow the user to display the notepad, the in and out boxes,
and Extras in landscape orientation (fig. 29). Users have often requested this
feature for reading e-mail, writing some notes, and for fax receive.

Fig. 29 – screen shot of Notepad rotated

NAMES WILL NEVER HURT ME

The Name File (fig. 30) has also undergone extensive redesign to
accommodate increased functionality and to ease data entry. All the usual
suspects are there: pickers, increased line spacing, New and Show buttons.
Unique UI elements include an Add button which allows the user to
configure and grow the card to his or her specifications. Input is made at
the slip level (consistent with other apps) and editing is achieved by tapping
the text to be changed. Expandos are minimized because users complained
about dropping ink and their unnatural feel. (They are used in the new
Custom fields but are larger and more forgiving than before.)

Fig. 30 – screen shot of Name Card with entry slip open

The A-Z tabs replace the A-Z picker that some users complained was
difficult to target. The second tap on a tab takes you to the second letter –
an interface that is quickly learned by users.

While some current Newton 1.x users miss the old UI where information
was added in a single screen, supporting the increased functionality made
the evolution to a multi-slip approach necessary. New users value the
customizability of the new approach.

Another change was made in direct response to customer feedback.
Beaming business cards was considered too cumbersome in Newton 1.x
machines, so a “beam my card” option (fig. 31) has been added to the
routing slip in Names. Users can now exchange business cards via beaming
with much fewer pen taps than before.

November 1995 Newton Technology Journal

24

Fig. 31 – screen shot of Beam My Card feature

OUT WITH THE OLD, IN WITH THE NEW

The In/Out Box (fig. 32) has been upgraded considerably both in look and
function. It has been promoted from a slip-based mini-app to a full-fledged
application, based on NewtApp, with filing and routing support. Newton 2.0
UI elements are generalized here as well. Check boxes allow for multiple
selection. Bullet points allow collapsing and expanding. (The Overview
button provides a shortcut to do this too.) The information button allows
access to help and local preferences. In Box / Out Box radio buttons at the
top of the screen serve a dual purpose of identifying which box you are in
and providing quick access to the other. Icons identify transport type and
allow previewing of the document itself.

Fig. 32 – screen shot of I/O Box

Local preferences allow for multiple sort orders (by date, by transport, or
by status) logging capability, and the ubiquitous internal store preference.
Transport-specific preferences use pickers to provide extensive flexibility and
user customizability. Print, fax, beam, and e-world preferences allow the user
to configure everything from auto-filing to auto-delivery while avoiding
recognition completely.

The Fax Viewer interface allows the user the ability to manipulate large
binary objects and scale them in three dimensions.

The In/Out Box integrates three discrete architectural pieces –
stationery (users can view and organize entries while in the I/O Box), the
list manager (they can expand and collapse entries) and the underlying
transports (they can activate items, readdress them, log them etc.) . In

short, the I/O Box packs a significant amount of functionality into an
interface that maintains a top-level simplicity. By utilizing mostly off-the-
shelf Newton 2.0 UI components, the creators of the I/O Box have
maintained a high level of usability.

Users reactions have been overwhelmingly positive. “This is a nice
improvement for all communications functions.” “Great. Super
implementation.” “This makes the Newton much easier to use.” “This comes
closest to a universal In/Out box than anything I’ve seen.”

DESIGNING FOR NEWTON 2.0
The changes made to the Newton interface reflect a maturing of the
operating system based on real-world experience. Like a young person who
grows up, inherent flaws have been smoothed over and positive qualities
(we hope!) shine through. In terms of designing for the new OS, there are a
few principles that we followed that developers may find useful:
1) Do yourself, and the user, a favor by easing data entry--provide more

space for writing, more pickers, and less recognition where appropriate.
2) KISS – keep it simple, stupid. When it comes to designing for the

MessagePad, less is definitely more. Build in breathing space in your
apps.

3) Mimic the interface that’s already there. Not that we think it’s the only
way to do it, but users are already familiar with it.

4) Finally, user test, user test, user test.

Newton Technology Journal November 1995

25

NTJ

To request information on
or an application for

Apple’s Newton developer programs,
contact Apple’s Developer Support Center at

408-974-4897
or Applelink: DEVSUPPORT

or Internet: devsupport@applelink.apple.com.

more complicated than ever. Busy schedules, increased travel, and leaner
staff mean that mobile professionals are having to do significantly more –
with less. Less resources. Less time. And tighter budgets. A look at the
various market analyst reports from companies including BIS Strategic
Decisions1 and Forrester Research2 outline the major trends about mobile
professionals and how they work today:

• Professionals are more mobile. 71 percent of today’s 44 million
professionals in the United States spend more than 20 percent of their
time away from their desk. Whether they’re roaming a corporate
campus or find themselves 35,000 feet in the air bound for a business
meeting, they often find themselves without access to the resources they
need to successfully conduct business – support staff, e-mail, key files
and documents, and so on.

• Mobile professionals have less support than before. Corporate
downsizing, decentralization, and a tight economy worldwide have
resulted in leaner support staffs. Few professionals have the luxury of a
dedicated support person; in today’s working environment, it’s much
more likely that professionals share support personnel. The result is that
professionals have to do more administrative work themselves – faxing,
writing correspondence, sending messages, making reservations, and
keeping their own calendar. Under extreme pressure, many
professionals simply need assistance.

• Access to information is no longer a problem – keeping on top of
that information is now a problem. For most of the 1980s and early
1990s, the quest was to give users full access to the information on the
network. With client-server models implemented in many companies,
access is rarely the issue – from their desktop systems, professionals are
able to access many resources of their corporate network, intra
networks, and the Internet. The challenge today is handling the deluge
of information: sifting through it, pulling relevant information out, and
using information intelligently. Today’s mobile professionals need better
tools to deal with all the information in their lives.

• Staying in touch is a way of life – you need to do be reachable to stay
competitive. The proliferation of e-mail, paging systems, voice mail, and
other electronic means of keeping in touch has created a world where
professionals can be reached regardless of where they are. These new
ways of communicating are dramatically changing the way people
conduct business. Being “always reachable” has become an absolute
necessity, and professionals need tools to help them deal with the
barrage of messages they get.

A host of technologies is being deployed to gain a competitive edge
In response to the challenges of the new business environment, mobile

professionals have adopted a wide range of technologies to help them deal
with their daily flow of information:
• Cellular phones. Over 8 million professionals use cellular phones in the

United States to keep in touch.
• Pagers. 8.7 million use pagers to stay in touch with colleagues and

customers.

• Portable computers. 4.6 million use portable computers to take
information on the road with them.

Each of these devices has enabled mobile professionals to use their time
more efficiently. Obviously, each device offers a different way of
communicating: the phone provides direct two-way contact; pagers, at least
until very recently, offer one-way contact; and portable computers provide a
way to actually do desktop computing work on the road. However, the
multitude of professionals who take more than one device with them during
the day – for example, a phone and a pager, or a phone and a portable PC –
indicates that professionals need multiple ways of staying in touch.

Enter the personal digital assistants (PDAs). They combine many of the
best aspects of the tools that mobile professionals have come to depend on
– phones, dayrunners, personal computers. By offering a combination of
these capabilities in a single device, PDAs are, in many ways, more powerful
than these other devices.

PDA use is growing in the market, as companies and individuals are
beginning to see the advantages of having a small, completely portable
information and communications device. Forrester Research, Inc., an
independent research firm, recently conducted a study of the PDA market
and projected strong growth through the end of the decade. They predict
that the installed base of PDAs will be over 8 million in 1999. This number
would be be achieved by doubling the installed base annually.3

What PDAs can do to help
PDAs offer new capabilities – in an integrated package.
PDAs give users the best of all worlds: they offer the advantages of many

of today’s devices – without the drawbacks. They deliver the processing
power of many personal computers, yet they’re much lighter to carry
around. They provide the communications capabilities of pagers and PCs,
yet they also handle many other functions. They are intuitive to use, but
much less intrusive than PCs in a meeting or business setting. Here are
some of the advantages that PDA devices provide:
• Mobile data capture. Because of their low weight and small size, PDAs

make ideal data capturing devices – for heavy-duty industrial uses, such as
gathering inventory data, for taking notes in a meeting, and for jotting
down expenses from a business trip. They’re unobtrusive, and easy to use.

• Personal information management features, anytime, anywhere. For
mobile professionals who need to stay on top of all the little bits of
information in their life – appointments, telephone numbers, addresses,
and notes – PDAs offer an ideal way to take a personal information
management application with them everywhere they go.

• Strong communications capabilities. By combining the best features of
pagers, cellular phones, and computers, PDAs deliver robust
communications capabilities including paging, faxing, and access to e-
mail and on-line and information services either wired or wirelessly.
Integrating communications capabilities with other PDA applications
such as call and contact management features allows for more efficient
communications – and a better use of the user’s time.

• Instant access to functionality. Unlike computers, there is no boot-up

November 1995 Newton Technology Journal

26

continued from page 1

Newton 2.0: What’s the Big Idea?

time for PDAs. Users have instant access to information and
applications, enabling the rapid recording of notes, ideas, facts, figures –
even while walking about on the factory floor or between meetings in a
corporate setting.

• Smaller, lighter, cheaper – and fewer moving parts. PDAs offer a
significant size advantage for mobile professionals. That is, they’re
lighter than PCs, less expensive, smaller – and contain fewer parts that
require service or can break on the road. Though it may seem like a
rather small point, the fact that a PDA can be up to 5 pounds lighter than
an average portable PC starts to make a significant difference on that
long trek to your boarding gate.

• All this – and it can be integrated into your computing world. Of
course, all these capabilities aren’t really worth having, unless they can
be integrated into your world. PDAs, such as the Apple MessagePad and
the Motorola Marco, can be effortlessly integrated into computer
networks and used as companions to desktop PC systems. Newton PDA
products offer superior connectivity, data-sharing capabilities, and
synchronization capabilities.

NEWTON 2.0 PLATFORM OVERVIEW:
“ORGANIZE. COMMUNICATE. INTEGRATE.”

The Newton platform is the only PDA platform that offers strong capabilities
in the three areas that mobile professionals require in a mobile device:
organization, communication, and integration with desktop systems.

Organization capabilities
The Newton 2.0 OS offers the most complete set of organizational

functions of any PDA, both built-in and from third parties. These “best of
class” capabilities include:
• Names – Enables you to easily record and recall names, addresses,

telephone numbers, and important contact and personal information.
• Dates – Enables you to keep your calendar, to-do lists, and reminders

organized.
• Notes – Enables you to take notes, including freeform notes in digital

ink, graphics, and notes that are converted to typed text. Additionally,
an API is now supported that enables developers to add different kinds
of stationery in addition to plain notes.

• Other organizational tools. Newton 2.0 includes a worldwide map with
time zones, conversion tables, common formulas, a call and contact
tracker as well as an alarm clock.

• The broadest availability of third party applications from traditional
ISVs, and more importantly, hundreds of new developers.

While many of the capabilities enumerated above were also available with
Newton 1.0, their power, scope, and ease-of-use have been greatly improved
in Newton 2.0. These improvements are highlighted later in this article.

Communication capabilities
The Newton 2.0 offers improved communications capabilities over

Newton 1.0. The Newton platform makes it easy for users to:
• Manage all their communications in a universal in and out box
• Send and receive faxes
• Access e-mail
• Access the Internet with a forthcoming TCP/IP stack
• Share information wirelessly with other Newton users by taking

advantage of the “beaming” capabilities of the platform
• Add future communications solutions. The Newton communications

architecture is a platform for additional hardware, services, and
protocols, allowing in-house developers and ISVs to easily build in the
communications capabilities that users want. Motorola, for instance, has
created a Newton PDA that has a radio built in which supports Ardis and
the RadioMail service. Key to Newton 2.0 has been a significant overhaul
to the communications APIs and tools.

The Newton platform has been designed to let users accomplish these
communication tasks via wired and wireless means such as:
• Connection to computer networks via a built-in serial port. Newton

can be easily integrated into AppleTalk and TCP/IP networks
• Wireless connection to networks and on-line services via PC card

modems and external modems.
• Wireless access to on-line services through a cellular phone – for

instance, users can connect their Newton device to a standard cellular
phone and access e-mail services.

• Integrated wireless access through products like the Motorola Marco.

Personal Computer Integration capabilities
The Newton platform is designed to serve as an ideal companion to

desktop PCs. Newton devices can be used in the field to gather information
for use later on a desktop system back at the office. Of course, the reverse is
true, too – while users are in the field, Newton devices can be used to access
information that’s stored on remote PCs. Newton 2.0 platform offers
unprecedented connectivity to PCs:
• Desktop Integration Libraries (DILs). This Apple technology makes it

easy for developers to create end-user solutions that allow direct
synchronization of data between Newton PDAs and applications on PCs.
Ultimately, DILs will make it possible for data in hundreds of PC
applications to be synchronized with data on Newton PDAs – so you
could use the same personal information management applications or a
database on your PC and PDA and keep the two pieces of information in
perfect synchronization.

• Newton Backup Utility. This free product gives customers the most
critical PC integration features they need. It keeps their data safe by
making it easy to back up their Newton PDA information onto their PC –
and then restore it when they’re ready to use it again. The Newton
Backup Utility also allows them to download packages from their PC to
their Newton PDA, so they can install software and other files by just
tapping a button.

• Newton Connection Utilities. Newton Connection Utilities gives you
everything you need to integrate data on your Newton PDA and your PC
– even when you’re away from your desk. It offers the same backup,
restore, and installation features in the Newton Backup Utility. Plus, it
lets you synchronize desktop files with corresponding data residing on
your Newton PDA. So, for example, your file of names and phone
numbers on your PC can be synchronized with the ones on your PDA.
You can also import and export text files and information between your
PC and PDA. Newton Connection Utilities even allows you to use a PC
keyboard to enter data directly into your Newton PDA. And by using a
modem, you can perform these tasks even when you’re on the road.

• Newton Press. Newton Press provides mobile professionals with a
convenient drag-and-drop method of publishing electronic books that

Newton Technology Journal November 1995

27

can be read on a Newton PDA. Using your Windows or Macintosh
computer, all you have to do is drag the text files, graphics, e-mail, and
reference information you want and drop them onto the Newton Press
icon; an electronic book is automatically created that you can format and
import into your Newton PDA. You can view, fax, annotate, and print the
book. And you can even distribute it to other Newton PDA users.

A superior and open platform
Unlike other PDA platforms that are essentially proprietary and closed

systems, Newton is a completely wide open system. Apple’s goal is to enable
both commercial developers and in-house development teams, to quickly
create applications. The Newton 2.0 platform offers the most mature set of
development tools in the industry:
• Newton Toolkit. This robust development environment offers rapid

prototyping, a library of extensible components, and an interactive
development cycle that quite literally lets developers see results in
minutes. We have added support for a 2.0 platform file and most
importantly brought these tools to Windows. (We like to joke that even
though people may have made the wrong choice in personal computers,
they can still make the right choice with PDAs.)
– Newton Book Maker. This application enables you to effort1lessly

create electronic books out of documents on a PC for use on
Newton PDAs. Book Maker is similar to Newton Press, but is a more
powerful development tool that allows integrating custom
functionality using NewtonScript.

– C++ tools. Apple will be offering low-level programming tools
that enable calling C++ routines from within Newton applications,
letting developers capitalize on previous development efforts to get
their applications to perform computation intensive tasks.

These tools have enabled corporate development teams to prototype
custom Newton applications that are fully integrated into the fabric of their
existing network, database, and PC environment in matter of a few weeks or
months as opposed to years.

The largest number of third-party applications
The Newton platform also has the advantage of offering users more than

1,000 off-the-shelf applications, shareware, freeware and utilities which do
everything from organizing your day, to tracking expenses, to highlighting
places to visit in foreign cities. These applications have been created by familiar
names in the computer industry – Claris, Intuit, and a host of other innovative
companies. It is this creative community of developers that has truly helped
position the Newton platform as the premier PDA platform for customers.

Newton 2.0: Improvements on all fronts
Based on extensive customers testing, the Newton 2.0 OS makes

significant improvements over Newton 1.0 software. Every aspect of the
software has been updated, optimized, or rearchitected to allow for higher
performance and enhanced ease-of-use:

Improved input methods
Getting information into a Newton PDA has never been easier. Apple has

made improvements on three main fronts:
• Improved handwriting recognition. Newton 2.0 now offers more

accurate handwriting recognition as compared to 1.0. Early on during
the development of 1.0, every user study indicated that customers would

not modify their handwriting style to achieve better recognition results.
This led us to a very dictionary centric approach to recognition. In
Newton 1.0, when a word was written that was included in the
dictionary, it usually would get recognized. However, for words not in
the dictionary such as names and places the poor results were worthy of
great laughs and parodies. Fortunately, Palm Computing developed
Graffiti, which made recognition work if you trained yourself to write
letters in a very precise, if somewhat unusual way. The popularity of
Graffiti forced us to rethink our original assumptions that users were not
willing to adapt to recognition. With Newton 2.0, the printed recognizer
now allows customers to write non dictionary words with excellent
results as long as they lift the pen between each letter. This improved
printed recognition is no longer based primarily on a dictionary lookups,
but instead looks at individual letters first, then comparing to a
dictionary. Of course, Apple, along with Paragraph, Inc. has also made
significant improvements to the cursive recognizer by improving the low
level algorithms and increasing the number of words in the dictionary.

• Ink Text. In addition to improved recognition, the new OS also enables
users to record ideas and text in “ink text” which allows for rapid note
taking without any waiting for text to be recognized before moving on to
other words. Ink text flows words into sentences in the same manner as
recognized or typed text, but does not perform recognition. Each word
is moved into place after the previous, as opposed to leaving the ink as a
graphic where it was originally written. Ink text can also be mixed with
sentences containing regular words as well, but this is more than ink
word processing. Ink text can be used in any application and recognized
as regular information, without having to be recognized or typed. For
example, a customer can enter a meeting title in ink, set an alarm, and
when the alarm goes off the alert displays the meeting title in ink.

• Keyboard entry of data. When you connect your Newton PDA to a
Windows or Mac OS computer you can use that PC’s keyboard to enter
data directly into your Newton PDA. The text you type instantly appears
on your PDA’s screen. In addition, Apple will be offering a small portable
hardware keyboard for when you need to respond to volumes of e-mail
while on the road.

• Data export and import. Newton Connection Utilities and the Desktop
Integration Libraries enable you to easily import and export data from a
Newton PDA to a PC and vice versa. This makes transferring data and
files simple and easy. With Newton Press, you can easily publish Newton
books of information to take with you as well.

• Ease of use. The Newton interface has been made more intuitive and
consistent across all areas:
– Consistency. One of the most important goals for the Newton 2.0

user interface was to insure greater consistency across the built-in
applications. You’ll notice that the familiar folder and envelope
buttons, as well as a keyboard icon, are available everywhere. Some
new features we have added are a “New” button to all built-in
applications and a “Show” button for those applications with
multiple views of information such as the calendar. These buttons
are becoming analogous to the Mac OS “File and Edit” present in all
applications.

– Predictability. In 1.0 we tried to intuit what a user was trying to do
and more often than not, we were wrong. In Newton 2.0 we have
made the system more explicit in various areas including text entry.
Users now have a caret (^) displayed on the screen for directing
the exact placement of text. You can still place the caret anywhere

November 1995 Newton Technology Journal

28

Newton Technology Journal November 1995

29

on screen to insure free form note taking, unlike a word processor,
but now you can be sure the words you enter go where you want.

– Intelligence. People are creatures of habit and machines should be
smarter about watching what people do and learning from their
actions. One example of this is the familiar diamond for a pop up
list of choices. In 2.0, lists can be made smarter and keep track of
the information you enter such as the people you send mail to, the
companies you work with, and the things that you do.

• Increased performance. Newton 2.0 has many performance
improvements in the areas of NewtonScript code and also soup and data
management. In general, NewtonScript performance for compute-
intensive functions is almost as fast as if the code were compiled, but the
code size is still significantly smaller as expected in an interpreted
language. In addition, with support for indexing, tags and general
improvements in soups, customers have the ability to manage large
amounts of information in database-oriented applications or more
simply through the use of folders.

SUMMARY

Competition intensifies, but Apple continues to innovate and develop the
market.

The Newton OS was developed to be a scalable architecture to support a
wide variety of small, portable PDA devices. Since Apple coined the term

PDA in 1992, dozens of companies have entered the PDA market.
Today, Newton PDA products, that is, the Apple MessagePad and

Motorola Marco, remain the dominant platform – in terms of market share,
performance, breadth of solutions, and developer flexibility. The platform is
a generation – or two – ahead of competitors.

The Newton platform offers mobile professionals real solutions for
organization, communications, and personal computer integration. In
addition, Apple is providing a complete set of developer tools and programs
to make the platform more open to ISVs and custom in-house development.
The fact that Newton 2.0 offers all of this makes it the premier PDA platform
which will continue to grow and develop the market.

No other platform offers this today and most will not be able to offer this
for years to come. Newton 2.0 is a major step for the Newton platform and
we believe the future holds great opportunities for Apple, our partners,
developers and most importantly our customers.

1BIS Strategic Decisions, Mobile Professional Segmentation Study, January 1995
2Forrester Research, PDA’s: Time Will Tell, August 1994
3Forrester Research, Inc. PDA’s: Time Will Tell, August 1994, page 9.

NTJ

data to the user in views, and allows the user to edit some or all of the data,
then it is a potential candidate for using the NewtApp framework. NewtApp
is well suited to “classic” form-based applications. Some of the built-in
applications constructed using the NewtApp framework include the Notepad
and the Names file.

STATIONERY

Stationery is a new capability of Newton 2.0 that allows applications to be
extended by other developers. If your application supports stationery, then
it can be extended by others. Similarly, you can extend another developer’s
application that supports stationery. You should also note that the printing
architecture now uses stationery, so all application print formats are
registered as a kind of stationery.

The word “stationery” refers to the capability of having different kinds of
data within a single application (such as plain notes and outlines in the
Notepad) and/or to the capability of having different ways of viewing the
same data (such as the Card and All Info views in the Names file). An
application that supports stationery can be extended either by adding a new
type of data to it (for example, adding recipe cards to the Notepad), or by
adding a new type of viewer for existing data (a new way of viewing Names
file entries or a new print format, for example).

To support stationery, an application must register with the system a
frame, called a data definition, that describes the data with which it works.
The different data definitions available to an application are listed on the
pop-up menu attached to the New button. In addition, an application must
register one or more view definitions, which describe how the data is to be
viewed or printed. View definitions can include simple read-only views,
editor-type views, or print formats. The different view definitions available in
an application (not including print formats) are listed on the pop-up menu
attached to the Show button.

Stationery is a powerful capability that makes applications much more
extensible than in the past. Stationery is also well integrated into the
NewtApp framework, so if you use that framework for your application,
using stationery is easy.

VIEWS

New features for the view system include a drag-and-drop interface that
allows you to provide users with a drag-and-drop capability between views.
There are hooks to provide for custom feedback to the user during the drag
process and to handle copying or moving the item.

The system now includes the capability for the user to view the display in
portrait or landscape orientation, so the screen orientation can be changed

continued from page 1

Technical Overview of Newton 2.0: The Developer Perspective

(rotated) at any time. Applications can support this new capability by
supporting the new ReorientToScreen message, which the system uses to
alert all applications to re-layout their views.

Several new view methods provide features such as bringing a view to the
front or sending it to the back, automatically sizing buttons, finding the view
bounds including the view frame, and displaying modal dialogs to the user.

There is a new message, ViewPostQuitScript, that is sent to a view on
request when it is closing, after all of the view’s child views have been
destroyed. This allows you to do additional clean-up, if necessary. And,
you’ll be pleased to know that the order in which child views receive the
ViewQuitScript message is now well-defined: it is top-down.

Additionally, there are some new viewJustify constants that allow you to
specify that a view is sized proportionally to its sibling or parent view,
horizontally and/or vertically.

PROTOS

There are many new protos supplied in the new system ROM. There are
new pop-up button pickers, map-type pickers, and several new time, date,
and duration pickers. There are new protos that support the display of
overviews and lists based on soup entries. There are new protos that
support the input of rich strings (strings that contain either recognized
characters or ink text). There are a variety of new scroller protos. There is
an integrated set of protos designed to make it easy for you to display status
messages to the user during lengthy or complex operations.

Generic list pickers, available in system 1.0, have been extended to
support bitmap items that can be hit-tested as two-dimensional grids. For
example, a phone keypad can be included as a single item in a picker.
Additionally, list pickers can now scroll if all the items can’t fit on the screen.

DATA STORAGE

There are many enhancements to the data storage system for system
software 2.0. General soup performance is significantly improved. A tagging
mechanism for soup entries makes changing folders 7000% faster for the
user. You can use the tagging mechanism to greatly speed access to subsets
of entries in a soup. Queries support more features, including the use of
multiple slot indexes, and the query interface is cleaner. Entry aliases make
it easy to save unique pointers to soup entries for fast access later without
holding onto the actual entry.

A new construct, the virtual binary object, supports the creation and
manipulation of very large objects that could not be accommodated in the
NewtonScript heap. There is a new, improved soup change notification
mechanism that gives applications more control over the notification and
how they respond to soup changes. More precise information about exactly
what changed is communicated to applications. Soup data can now be built
directly into packages. Additionally, packages can contain protos and other
objects that can be exported through magic pointer references, and
applications can import such objects from available packages.

TEXT INPUT

The main change to text input involves the use of ink text. The user can
choose to leave written text unrecognized and still manipulate the text by
inserting, deleting, reformatting, and moving the words around, just like with
recognized text. Ink words and recognized words can be intermixed within
a single paragraph. A new string format, called a rich string, handles both ink
and recognized text in the same string.

There are new protos, protoRichInputLine and protoRichLabelInputLine,

that you can use in your application to allow users to enter ink text in fields.
In addition, the view classes clEditView and clParagraphView now support
ink text. There are several new functions that allow you to manipulate and
convert between regular strings and rich strings. Other functions provide
access to ink and stroke data, allow conversion between strokes, points, and
ink, and allow certain kinds of ink and stroke manipulations.

There are several new functions that allow you to access and manipulate
the attributes of font specifications, making changing the font attributes of
text much easier. A new font called the handwriting font is built in. This font
looks similar to handwritten characters and is used throughout the system
for all entered text. You should use it for displaying all text the user enters.

The use of on-screen keyboards for text input is also improved. There
are new proto buttons that your application can use to give users access to
the available keyboards. It’s easier to include custom keyboards for your
application. Several new methods allow you to track and manage the
insertion caret, which the system displays when a keyboard is open. Note
also that a real hardware keyboard is available for the Newton system, and
users may use it anywhere to enter text. The system automatically supports
its use in all text fields.

SYSTEM SERVICES

System-supplied filing services have been extended; applications can now
filter the display of items according to the store on which they reside, route
items directly to a specified store from the filing slip, and provide their own
unique folders. In addition, registration for notification of changes to folder
names has been simplified.

Two new global functions can be used to register or unregister an
application with the Find service. In addition, Find now maintains its
state between uses, performs “date equal” finds, and returns to the user
more quickly.

Applications can now register callback functions to be executed when the
Newton powers on or off. Applications can register a view to be added to
the user preferences roll. Similarly, applications can register a view to be
added to the formulas roll.

The implementation of undo has changed to an undo/redo model
instead of two levels of undo, so applications will need to support this
new model.

GRAPHICS AND DRAWING

Style frames for drawing shapes can now include a custom clipping region
other than the whole destination view, and can specify a scaling or offset
transformation to apply to the shape being drawn.

Several new functions allow you to create, flip, rotate, and draw into
bitmap shapes. Also, you can capture all or part of a view into a bitmap.
There are new protos that support the display, manipulation, and annotation
of large bitmaps such as received faxes. A new function, InvertRect, inverts a
rectangle in a view.

Views of the class clPictureView can now contain graphic shapes in
addition to bitmap or picture objects.

SOUND

The interface for playing sounds is enhanced in Newton 2.0. In addition to
the existing sound functions, there is a new function to play a sound at a
particular volume and there is a new protoSoundChannel object. The
protoSoundChannel object encapsulates sounds and methods that operate
on them. Using a sound channel object, sound playback is much more

November 1995 Newton Technology Journal

30

flexible – the interface supports starting, stopping, pausing, and playing
sounds simultaneously through multiple sound channels.

BUILT-IN APPLICATIONS

Unlike in previous versions, the built-in applications are all more extensible
in version 2.0. The Notepad supports stationery, so you can easily extend it
by adding new “paper” types to the New pop-up menu. The Names file also
supports stationery, so it’s easy to add new card types, new card layout
styles, and new data items to existing cards by registering new data
definitions and view definitions for the Names application. There’s also a
method that adds a new card to the Names soup.

The Dates application includes a comprehensive interface that gives you
the ability to add, find, move, and delete meetings and events. You can get
and set various kinds of information related to meetings, and you can create
new meeting types for the Dates application. You can programmatically
control what day is displayed as the first day of the week, and you can
control the display of a week number in the Calendar view.

The To Do List application also includes a new interface that supports
creating new to do items, retrieving items for a particular date or range,
removing old items, and other operations.

RECOGNITION

Recognition enhancements include the addition of an alternate high-quality
recognizer for printed text and significant improvements in the cursive
recognizer. While this doesn’t directly affect applications, it does
significantly improve recognition performance in the system, leading to a
better user experience. Other enhancements that make the recognition
system much easier to use include a new correction picker, a new
punctuation picker, and the remote writing feature (new writing anywhere
is inserted at the caret position).

Specific enhancements of interest to developers include the addition of a
recConfig frame, which allows more flexible and precise control over
recognition in individual input views. A new proto, protoCharEdit, provides
a comb-style entry view in which you can precisely control recognition and
restrict entries to match a predefined character template.

Additionally, there are new functions that allow you to pass ink text,
strokes, and shapes to the recognizer to implement your own deferred
recognition. Detailed recognition corrector information (alternate words
and scores) is now available to applications.

ROUTING AND TRANSPORTS

The Routing interface is significantly changed in Newton 2.0. The system
builds the list of routing actions dynamically, when the user taps the Action
button. This allows all applications to take advantage of new transports that
are added to the system at any time. Many hooks are provided for your
application to perform custom operations at every point during the routing
operation. You register routing formats with the system as view definitions.
A new function allows you to send items programmatically.

Your application has much more flexibility with incoming items. You can
choose to automatically put away items and to receive foreign data (items
from different applications or from a non-Newton source).

The Transport interface is entirely new. This interface provides several
new protos and functions that allow you to build a custom communication
service and make it available to all applications through the Action button
and the In/Out Box. Features include a logging capability, a system for

displaying progress and status information to the user, support for custom
routing slips, and support for transport preferences.

ENDPOINT COMMUNICATION

The Endpoint communication interface is new. There is a new proto,
protoBasicEndpoint, that encapsulates the connection and provides
methods to manage the connection and send and receive data. Additionally,
a derivative endpoint, protoStreamingEndpoint, provides the capability to
send and receive very large frame objects.

Specific enhancements introduced by the new endpoint protos include
the ability to handle and identify many more types of data by tagging the
data using data forms specified in the form slot of an endpoint option. Most
endpoint methods can now be called asynchronously, and asynchronous
operation is the recommended way to do endpoint-based communication.
Support is also included for time-outs and multiple termination sequences.
Error handling is improved.

There have been significant changes in the handling of binary (raw) data.
For input, you can now target a direct data input object, resulting in
significantly faster performance. For output, you can specify offsets and
lengths, allowing you to send the data in chunks.

Additionally, there is now support for multiple simultaneous
communication sessions.

UTILITIES

Many new utility functions are available in Newton 2.0. There are several
new deferred, delayed, and conditional message-sending functions. New
array functions provide ways to insert elements, search for elements, and
sort arrays. Additionally, there’s a new set of functions that operate on
sorted arrays using binary search algorithms. New and enhanced string
functions support rich strings, perform conditional substring substitution,
translate a number of minutes to duration strings (“16 hours”, “40 minutes”),
and support easier formatting of numbers.

BOOKS

New Book Reader features include better browser behavior (configurable
auto-closing), expanded off-line bookkeeping abilities, persistent bookmarks,
the ability to remove bookmarks, and more efficient use of memory.

New interfaces provide additional ways to navigate in books, customize
Find behavior, customize bookmarks, and add help books. Book Reader also
supports interaction with new system messages related to scrolling, turning
pages, installing books, and removing books. Additional interfaces are
provided for adding items to the status bar and the Action menu.

Newton Technology Journal November 1995

31

NTJ

Newton Developer Programs
Apple offers three programs for Newton developers – the Newton Associates Program, the Newton
Associates Plus Program and the Newton Partners Program. The Newton Associates Program is a low
cost, self-help development program. The Newton Associates Plus Program provides for developers
who need a limited amount of code-level support and options. The Newton Partners Program is
designed for developers who need ujnlimited expert-level development. All programs provide focused
Newton development information and discounts on development hardware, software, and tools – all
of which can reduce your organization’s development time and costs.

Newton Associates
Program
This program is specially designed to provide low-cost,
self-help development resources to Newton developers.
Participants gain access to online technical information
and receive monthly mailings of essential Newton
development information. With the discounts that
participants receive on everything from development
hardware to training, many find that their annual fee is
recouped in the first few months of membership.

Self-Help Technical Support
• Online technical information and developer forums
• Access to Apple’s technical Q&A reference library
• Use of Apple’s Third-Party Compatibility Test Lab

Newton Developer Mailing
• Newton Technology Journal – six issues per year
• Newton Developer CD – four releases per year

which may include:
– Newton Sample Code
– Newton Q & A’s
– Newton System Software updates
– Marketing and business information

• Apple Directions – The Developer Business Report
• Newton Platform News & Information

Savings on Hardware, Tools, and Training
• Discounts on development-related Apple hardware
• Apple Newton development tool updates
• Discounted rates on Apple’s online service
• US $100 Newton development training discount

Other
• Developer Support Center Services
• Developer conference invitations
• Apple Developer University Catalog
• APDA Tools Catalog

Annual fees are $250.

Newton Partners
Program
This expert-level development support program helps
developers create products and services compatible
with Newton products. Newton Partners receive all
Newton Associates Program features, as well as
unlimited programming-level development support via
electronic mail, discounts on five additional Newton
development units, and participation in select
marketing opportunities.

With this program’s focused approach to the
delivery of Newton-specific information, the Newton
Partners Program, more than ever, can help keep
your projects on the fast track and reduce
development costs.

Unlimited Expert Newton Programming-level Support
• One-to-one technical support via e-mail

Apple Newton Hardware
• Discounts on five additional Newton development

units

Pre-release Hardware and Software
• Consideration as a test site for pre-release Newton

products

Marketing Activities
• Participation in select Apple-sponsored marketing

and PR activities

All Newton Associates Program Features:
• Developer Support Center Services
• Self-help technical support
• Newton Developer mailing
• Savings on hardware, tools, and training

Annual fees are $1500.

Newton Associates Plus
Program
This program now offers a new option to developers
who need more than self-help information, but less
than unlimited technical support. Developers receive
all of the same self-help features of the Newton
Associates Program, plus the option of submitting up
to 10 development code-level questions to the Newton
Systems Group DTS team via e-mail.

Newton Associates Plus Program Features:
• All of the features of the Newton Associates

Program
• Up to 10 code-level questions via e-mail

Annual fees are $500.

For Information on All
Apple Developer Programs
Call the Developer Support Center for
information or an application. Developers
outside the United States and Canada
should contact their local Apple office for
information about local programs.

Developer Support Center
at (408) 974-4897
Apple Computer, Inc.
1 Infinite Loop, M/S 303-1P
Cupertino, CA 95014-6299

AppleLink: DEVSUPPORT

Internet: devsupport@applelink.apple.com

Apple Developer Group

®

